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Abstract: We present a systematic and physically inspired general-
ization of the equilibrium response formula, also called fluctuation-
dissipation theorem, to Markov processes possibly describing interact-
ing particle systems out-of-equilibrium.

The subject covered here originates from discussions with
Marco Baiesi, Wojciech De Roeck, Karel Netočný and Bram Wynants.
This text is the written-out version of a talk given at the ETH Zürich
on 10 June 2009, at the conference on Open systems: Non-Equilibrium
Phenomena–Dissipation, Decoherence, Transport. I am grateful to
Profs. J. Fröhlich and G.M. Graf for their kind invitation and hos-
pitality. The first announcement of the results was made in the paper
[1] by M.Baiesi, C.Maes and B.Wynants, soon to appear. A more elab-
orate exposition with many more references will also be finished soon.
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1. Response in equilibrium

Relations between fluctuations, response behavior and
dissipation in equilibrium systems have been obtained and applied
throughout the development of statistical mechanics in the 20th cen-
tury, [7]. Let us consider a simple situation, which falls in the context
of the present discussion. Take an Ising spin system on a finite graph
(Λ,∼); at each vertex i ∈ Λ there is a spin σi = ±1. We consider a spin
flip Markov dynamics on the configurations σ ∈ {+1,−1}Λ ≡ K with
possible transitions σ → σj where σj

i = σi for j 6= i and σj
j = −σj is the

new configuration spin flipped at vertex j. Physically, we imagine that
there is a thermal reservoir perhaps in the form of lattice vibrations
or of electronic degrees of freedom attached to the system so that for
each transition σ → σj there is an energy exchange U(σj)−U(σ) with
and an entropy flux [U(σ) − U(σj)]/T in the reservoir at equilibrium
temperature T . There is no need here to specify that energy function
U(σ). The transition rates for σ → σj are chosen à la Glauber

W (σ, σj) = ψ(σ, j) exp−β

2
[U(σj)− U(σ)] (1)

where the prefactor ψ(σ, j) = ψ(σj, j) does not depend on σj.
That defines a purely dissipative relaxational dynamics. There is a
reversible stationary distribution ρ giving probabilities

ρ(σ) =
1

Z
e−βU(σ) (2)

to the spin configurations. We call it the equilibrium distribution. The
reversibility is expressed by the condition of detailed balance

W (σ, σj) ρ(σ) = W (σj, σ) ρ(σj), for all j ∈ Λ, σ ∈ K

but the really important property is the time-reversal symmetry for
the stationary process: denoting by Pρ the stationary Markov (equilib-
rium) process with fixed time marginals equal to ρ, we have equilibrium
correlations

〈f(σ(s)) g(σ(t))〉ρ ≡
∫

dPρ(ω) f(ω(s)) g(ω(t))

= 〈f(σ(t)) g(σ(s)) ≡ Cf,g(s, t) (3)

function of |t− s| and time-reversal invariant, Cf,g(s, t) = Cf,g(t, s).

Suppose now that we start at equilibrium ρ at time t = 0 but there-
after we slightly modify the dynamics in a time-dependent way. For
example, for times t ∈ [0, τ ] during some interval of length τ we switch
on a magnetic field of small amplitude h. The transition rates have
now become

Wt(σ, σj) = W (σ, σj) e−β h(t) σj , t > 0
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where we allow for a general time-dependence h(t). That is the external

stimulus by which we change the energy function U in (1) into U −
h(t) V for V (σ) =

∑
i∈Λ σi. How will the equilibrium system respond?

The easiest case is when the h(t) is small and we look at the linear

response

〈Q(t)〉hρ = 〈Q(t)〉eqρ +

∫ t

0
ds h(s)R

eq
QV (t, s) + o(h)

Here, Q(t) = Q(σ(t)) is a function of the random spin configuration
evaluated at time t > 0. The left-hand side averages over the perturbed
dynamics, depending on h, and over the initial equilibrium ρ; the right-
hand side averages over the unperturbed dynamics always starting in
ρ: 〈Q(t)〉eqρ =

∑
σ ρ(σ) Q(σ) as the equilibrium is time-invariant. The

linear correction contains the response function or generalized suscep-
tibility R

eq
QV (t, s) which is our object of study. Formally and leaving

away further decorations,

RQV (t, s) =
δ

δh(s)
〈Q(t)〉h(h = 0)

An interesting case would be to look at the response in the magnetiza-
tion itself, taking Q = V =

∑
σ(i); let us write R

eq
QV (t, s) = χeq(t− s)

for the response function then. It turns out, as we will see under more
general circumstances below that then

χeq(t− s) = β
∑
i,j∈Λ

d

ds
〈σi(s) σj(t)〉eqρ , 0 < s < t

is expressible as a time-correlation function in the equilibrium process.
That formula is valid for all times 0 < s < t and we can see what it
implies for the shift in magnetization when we would take h(t) = h, t ∈
[0, τ ]: to first order in h and for t ≥ τ

∑
i∈Λ

[〈σi(t)〉h − 〈σi(0)〉eqρ

]
= hβ

∑
i,j∈Λ

〈[σi(τ)− σi(0)] σj(t)〉eqρ (4)

All that is an example of the fluctuation-dissipation theorem for finite-

time perturbations. The more general equilibrium formula of which (4)

is a special case reads

R
eq
QV (t, s) = β

d

ds
〈V (s)Q(t)〉eqρ , 0 < s < t (5)

A proof of this is easy by applying first-order time-dependent pertur-
bation theory and by inserting the equilibrium condition (2).
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2. What in nonequilibrium ?

Take a Markov stochastic dynamics for a finite system. Denote the
state space by K. We have transition rates W (x, y), x, y ∈ K. We do
no longer assume that there is a potential, i.e. a function E(x), x ∈ K
for which W (x, y) exp−E(x) = W (y, x) exp−E(y). In particular, for
a stationary distribution ρ(x), x ∈ K, while

∑
y∈K

[ρ(x) W (x, y)− ρ(y) W (y, x)] = 0, x ∈ K

still, there are nonzero currents of the form ρ(x) W (x, y)−ρ(y) W (y, x) 6=
0 for some pairs x 6= y ∈ K. The stationary process (Markov dynamics
in ρ) is then no longer time-reversible. We have in mind systems of
stochastically interacting particles which are driven away from equilib-
rium; the state x is then the total configuration of particles and the
transitions are local.
Secondly we also do not assume that we start at time t = 0 from a
stationary distribution. Rather, we have an arbitrary probability dis-
tribution µ(x), x ∈ K, from which the initial data are drawn and then
for t > 0 we apply the perturbed dynamics. That perturbed dynamics
uses transition rates

Wt(x, y) = W (x, y) e
β h(t)

2
[V (y)−V (x)]

for some potential V with small amplitudes h. The inverse temperature
β signals that the perturbation concerns an additional energy exchange
with a reservoir at temperature β−1.
At time t > 0 the expected value of an observable Q will most probably
deviate both from the expectation under the unperturbed dynamics
and from the stationary expectation:

〈Q(t)〉hµ 6= 〈Q(t)〉µ
6= 〈Q(t)〉ρ =

∑
x∈K

ρ(x)Q(x) (6)

Note that we abbreviate Q(t) = Q(x(t)). The right-hand sides concern
the unperturbed dynamics, the upper one starting from µ and, on
the next line, when starting from the stationary ρ. Linear response
theory out-of-equilibrium is interested in estimating and interpreting
the deviations

〈Q(t)〉hµ − 〈Q(t)〉µ
to first order in h.

Here we start by letting h small and then we could take other limits
like t ↑ ∞. That is not the most interesting or unique physical set-
up. Moreover, also other types of perturbations than via a potential
become very interesting when away from equilibrium. Yet, this paper
deals with the simplest non-technical case as described above. There
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are various extensions, such as treating diffusion processes including
inertial dynamics or even non-Markovian dynamics or driven systems
without a uniquely defined reservoir temperature which can be treated
via the very same set-up as the present one, but they will not be dis-
cussed except for Section 8.

3. Response formula

Keeping in mind the previous set-up there is a simple formula for
the response. Let L be the backward generator, acting on observables:
for s > t,

d

ds
〈V (s) Q(t)〉µ = 〈LV (s) Q(t)〉µ , s > t > 0 (7)

For our case of Markov jump processes, we have simply

Lf(x) =
∑
y∈K

W (x, y)[f(y)− f(x)]

In case of equilibrium, formula (5) is equivalent with

R
eq
QV (t, s)=−β〈(LV )(s) Q(t)〉eqρ (8)

Then, our generalized response formula [1] also valid in nonequilibrium

is

Rµ
QV (t, s) =

β

2

d

ds
〈V (s)Q(t)〉µ −

β

2
〈LV (s) Q(t)〉µ

(9)
Remark that in the first term it does not make sense to take the time-
derivative inside the expectation; the random paths are piecewise con-
stant. On the other hand, for s > t (7) applies and therefore, causality
in the sense that the response should vanish for s > t is automatically
verified in (9).
Observe that (9) shares its first term with (5) except for the factor 1/2
and we start from an arbitrary µ in (9); in general we have no explicit
formula for the stationary ρ.
Remark also that the formula (9) as such keeps making sense for a
much broader class of dynamics, including diffusion processes or infi-
nite volume dynamics when V and Q are local observables. We will
briefly comment on these generalizations in Section 8.

We explain the meaning of the two terms on the right-hand side of
(9).
The first term in (9) (as in (5)) is a correlation with the excess en-
tropy production. To see it, we write its contribution to the deviation
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〈Q(t)〉hµ − 〈Q(t)〉µ in the time-integral

β

∫ t

0

ds h(s)
d

ds
〈V (s)Q(t)〉µ

= β〈{h(t)V (t)− h(0)V (0)−
∫ t

0

ds ḣ(s) V (s)}Q(t)〉µ (10)

which is the correlation of Q(t) in the unperturbed process with the
entropy flux

β{h(t)V (t)− h(0)V (0)−
∫ t

0

ds
d

ds
h(s) V (s)} (11)

Indeed we recognize the change of energy h(t)V (t) − h(0)V (0) in the

environment minus the work done on the system
∫ t

0
ds ḣ(s) V (s). Of

course, the system may already show a steady or transient entropy pro-
duction; in the response formula only the excess appears caused by the
time-dependent perturbation.

Secondly, in (9) there is also the correlation between Q(t) and the
function β LV at time s. For its interpretation we must look at the
escape rates, i.e. the frequencies at which the Markov jump process
leaves a state x. The escape rate at x ∈ K gets changed by the per-
turbation. Its excess is

∑
y

W (x, y)
{

e
β h
2

[V (y)−V (x)] − 1
}

' β h

2

∑
y

W (x, y)[V (y)− V (x)] =
β h

2
(LV )(x) (12)

to linear order in h. We call this the frenesy, derived from the adjec-
tive frenetic or frantic. The latter refers to the nervosity or dynamical
activity in the system. In contrast to the entropy production which
has a preferred direction in time, frenesy is a time-symmetric quantity
much like traffic is, while current is not.

The mathematical proof of formula (9) is elementary for finite state
space Markov processes. The expectation value in the perturbed process
can be related to the unperturbed one via a Girsanov formula over the
time-interval [0, t]:

〈Q(t)〉h =

∫
dPµ(ω)

dP h
µ

dPµ

(ω) Q(ω(t))
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for logarithmic density

log
dP h

µ

dPµ

(ω) =
β

2

∑
s

h(s)
[
V (ω(s))− V (ω(s−))

]

−
∑

y

∫ t

0

dsW (ω(s), y)
[
e

βh(s)
2

(V (y)−V (ω(s))) − 1
]

(13)

where the first sum is over the jump times s ∈ [0, t] in ω with ω(s−) the
state before the jump. On the other hand, since the path is constant
between the jump times (t0 = 0, t1, . . . , tn, tn+1 = t) in ω

∫ t

0

ds
d

ds
h(s) V (ω(s)) =

n∑

k=0

V (ω(tk))
[
h(tk+1)− h(tk)

]

= h(t)V (ω(t))− h(0)V (ω(0)) +
∑

s

h(s)
[
V (ω(s−))− V (ω(s))

]

by partial summation. We can therefore substitute (11) in the first line
of (13). The rest is expansion to first order in h for a finite number of
terms, with probability one.

Let us finally repeat (8) and see how formula (9) reconstructs the
equilibrium formula (5). For that we must take µ = ρ the equilibrium
distribution and apply time-reversal symmetry so that with s < t

〈LV (s) Q(t)〉eqρ = 〈LV (t) Q(s)〉eqρ

=
d

dt
〈V (t) Q(s)〉eqρ = − d

ds
〈V (t) Q(s)〉eqρ

= − d

ds
〈V (s) Q(t)〉eqρ

reconstructing the first term in (9). That is how (9) leads to (5) when
there is a stationary time-reversal symmetry (= equilibrium). In other
words, in equilibrium, the two terms on the right-hand side of (9) add
up to give (5); the frenesy-correlation then equals minus the correlation
with the entropy flux.

4. Example

We come back to the example (1) in the beginning of a Glauber spin-
flip dynamics but we add a mixing dynamics. More specifically, we not
only have transitions σ → σj with corresponding rates W (σ, σj), but
we also allow now transitions σ → σij where the spins at neighboring
vertices i ∼ j ∈ Λ get exchanged: σij

k = σk, if i 6= k 6= j while

σij
i = σj, σ

ij
j = σi. The rate for these exchanges is λ > 0. We now

have a reaction-diffusion process on K = {+1,−1}Λ with generator L
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acting on f : K → R,

Lf(σ) =
∑
j∈Λ

W (σ, σj)[f(σj)− f(σ)] + λ
∑
i∼j

[f(σij)− f(σ)]

That unperturbed dynamics does not satisfy the condition of detailed
balance when β 6= 0 for a nontrivial energy function U(σ). There is a
stationary distribution ρ of which very little is known.
We still consider the magnetization V (σ) = Q(σ) =

∑
i σi for organiz-

ing and evaluating the perturbation of amplitude h(t), t > 0. Note that
V (σij)−V (σ) = 0 and the transition σ → σij leaves the total magneti-
zation unchanged. Hence, for the frenesy, LV (σ) = −2

∑
i σiW (σ, σi).

Let us abbreviate W (σ, σi) = c(i, σ). We thus get the response around
steady nonequilibrium

δ

δhj(s)
〈σj(t)〉hρ (h = 0) =

β

2

d

ds
〈σi(s) σj(t)〉ρ + β〈σi(s)c(i, σ(s)) σj(t)〉ρ

For a constant perturbation h(s) = h, s ∈ [0, t] as in (4), we can inte-
grate over s ∈ [0, t] to get the leading order of the response:

1

h

∑
i

〈σi(t)〉h − 〈σi(0)〉ρ =
β

2

∑
i,j∈Λ

〈[σi(t)− σi(0)] σj(t)〉ρ (14)

+
β

2

∑
i,j∈Λ

∫ t

0

ds〈σi(0)c(i, σ(0)) σj(s)〉ρ

Note that the rate λ is hiding in the correlation functions but the form
(14) is unchanged no matter what is λ.

5. Relation with the notion of effective temperature

After having observed a violation of the equilibrium fluctuation–

dissipation relation for nonequilibrium regimes, people have asked whether

and have sometimes verified that there is an effective tempera-
ture in the sense that still

Rµ
QV (t, s) =

1

T eff

d

ds
〈V (s)Q(t)〉µ (15)

to resemble the equilibrium formula (5) but with a prefactor in terms

of what perhaps resembles a thermodynamic temperature-like quantity

for some classes of observables and over some scales of times (s/t, s),

[4]. A simple scenario takes our magnetic system of (1) but starts

with a highly disordered distribution µ. That µ could be the high-

temperature distribution of the Ising model on Λ. The unperturbed
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dynamics defined by (1) is however taken at a different bath temper-

ature (kB β)−1 = T , mostly at lower temperatures than initially. For

example, µ could be a product measure in which each spin is indepen-

dently ±1 with probability 1/2, while the environment temperature T

to which the system is exposed from t > 0 would be much lower. De-

pending on the graph and on the energy function U , the system can

exhibit metastable or long lived transient behavior which shows as (15).

Clearly whatever the purpose of the discussion an exact expression of

the response should help, especially when entirely in terms of explicit

correlation functions. The first such calculations are in [2].

In fact, now we can write the ratio T/T eff = X in terms of corre-
lation functions

X = XQV (µ; t, s) =
1

2

[
1− 〈LV (s) Q(t)〉µ

∂s〈V (s)Q(t)〉µ
]

(16)

In turn, the verification of the existence of an effective temperature
can now proceed by investigating the ratio between the frenetic and
the entropic term: if for some observables (V,Q) and over time-scales
(t/s, t),

Y
d

ds
〈V (s) Q(t)〉µ = −〈LV (s) Q(t)〉µ

for some Y , then X = (1 + Y )/2. Equilibrium has X = 1 = Y . In
the case where LV ≈ 0 as for a conserved quantity, then Y = 0. X

and the effective temperature T eff get negative when the frenetic term
overwhelms the entropic contribution.

6. Relation with co-moving frame interpretation

It is easy to find a relation with the interpretation in [3].
We take our formula (9) for stationary nonequilibrium, taking µ = ρ,
and it is immediate to rewrite it as

RQV (t, s)= β
d

ds
〈V (s)Q(t)〉ρ −

β

2

〈(
L−L∗

)
V (s) Q(t)

〉
ρ

(17)

in terms of the adjoint generator L∗ for which
∑

x ρ(x)(Lf)(x) g(x) =∑
x ρ(x) f(x) (L∗g)(x). In fact,

d

ds
〈V (s)Q(t)〉ρ = − d

dt
〈V (s)Q(t)〉ρ

= −〈(L∗V )(s) Q(t)〉ρ (18)

so that also

RQV (t, s)=−β〈(L + L∗

2
V )(s) Q(t)〉ρ (19)
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From (17) we see that when the perturbation V is time-direction inde-
pendent in the precise sense that LV = L∗V , then the nonequilibrium
response (17) (= (9) for µ = ρ) reduces to the equilibrium formula (5).

Let us look more into (17) and rewrite

((L− L∗)V )(x) = 2
∑

y

j(x, y)

ρ(x)
[V (y)− V (x)]

j(x, y) = W (x, y)ρ(x)−W (y, x)ρ(y)

For overdamped diffusion processes, which is the context of [3], we

would get L − L∗ = 2u · ∇ for the local velocity u(x) = jρ

ρ
(x) with

respect to the probability current jρ. In other words, the linear re-
sponse formula for stationary nonequilibrium (17) can be interpreted
as modifying the time-derivative d/ds of the equilibrium formula (5)
into d/ds − u · ∇ which is a co-moving derivative. The more precise
version of the above is formula (19) when compared with (8). We see
that the equilibrium formula (8) is simply reproduced when, in non-
equilibrium, we use the symmetric part of the generator (L + L∗)/2.
The change to a co-moving frame is like subtracting the antisymmetric
part of the generator: the passage to the Lagrangian frame of local
velocity removes the non-conservative forcing.
While that offers an interesting interpretation it is not clear how useful
that rewriting can be for spatial processes where the probability cur-
rent has little relation with the real physical currents.
For example, knowing that there is detailed balance in a co-moving
frame for energy function −β−1 ln ρ and with time-dependent coeffi-
cients offers little information. The point is that we do not know L∗

and we do not know ρ for general nonequilibrium systems; yet they
appear explicitly in (17) or in (19). In contrast, for our formula (9),
one has an explicit expression in terms of known observables and ρ only
enters the statistical averaging. For the purpose of numerical simula-
tion or experiment, no explicit knowledge of ρ is needed for verifying
(9) of for finding (16).

7. More on frenesy

We have been interpreting the second term in (9) in terms of the
nervosity, or what we have called the frenesy or the activity of the
dynamics. There would be little reason for it if that quantity had not
a larger role. Frenesy/Dynamical activity also appears in dynamical
fluctuation theory, [8, 10]. To start and always in the context of finite
state space Markov processes x(t) we look at

pτ =
1

τ

∫ τ

0

δx(t),· dt, δa,b = 0 if a 6= b, = 1 if a = b
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in the stationary process Pρ. That pτ defines the empirical distribution
of occupation times: pτ (x) is the fraction of time the system spends in
state x in the time [0, τ ] while initially drawn from the stationary ρ.
Clearly, pτ is invariant under time-reversal and pτ → ρ, τ ↑ +∞ when
Pρ is an ergodic Markov process. The fluctuations around that law of
large times has been the origin of much pleasure in the theory of large
deviations. Our context is again the simplest and it is well known since
the pioneering work in [6], that the steady-state probability that the
occupation statistics is given by the law µ obeys a fluctuation formula

P ρ[pτ ' µ] ' e−τI(µ), τ ↑ +∞
in the usual logarithmic sense, see e.g. [5, 6]. In the exponent sits

the functional I(µ) ≥ 0, with equality only for I(ρ) = 0. There is a
well-known variational expression for the fluctuation functional I(µ),

I(µ) = sup
g>0

−
∑

x

µ(x)
Lg

g
(x) (20)

where the supremum is over all positive functions g : K → R. (When
the dynamics is reversible and ρ is equilibrium, then we know more:
Ieq(µ) = −∑

x ρ(x)
√

f(x) (L
√

f)(x) for f(x) = µ(x)/ρ(x) when the
latter makes sense.)

Let us parameterize g(x) = exp βV (x)/2 in (20) so that
∑

x

µ(x)
Lg

g
(x) =

∑
x

µ(x)
∑

y

W (x, y){eβ
2
[V (y)−V (x)] − 1}

and we recognize the expected excess in escape rates when we add a
potential to the rates, see (12):

I(µ) = sup
V
−

∑
x

µ(x)
[ ∑

y

W (x, y)e
β
2
[V (y)−V (x)] −

∑
y

W (x, y)
]

The potential V = v that reaches (or approximates) the supremum has
an interpretation. It is that potential v which makes µ (approximately)
stationary; i.e., by changing W (x, y) → W (x, y) exp β(v(y) − v(x)/2.
Thus, with L̃ the generator for that modified process making µ sta-
tionary:

I(µ) =
∑

y

µ(x) W (x, y)−
∑

y

µ(x) W (x, y) eβ(v(y)−v(x)/2

' −β
∑

x

µ(x) Lv(x)

where the second line (expected frenesy in µ) is the first term in an
expansion around µ − ρ; second order in the distance from ρ as v is
then small as well.
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For further information on the frenesy functional, we refer to [10].
Let us just add that we can of course also consider the change in escape
rates by adding a general antisymmetric function F (x, y) to the rates

W (x, y) −→ W (x, y) e
1
2
F (x,y), F (x, y) = −F (y, x)

Then, the expected new escape rate

H(µ, F ) =
∑
x,y

µ(x) W (x, y) e
1
2
F (x,y)

is a potential function for the (expected transient) currents in the sense

δH(µ, F ) =
1

4

∑
x,y

jµ,F (x, y)δF (x, y)

for jµ,F (x, y) =
∑

x,y

[
µ(x)W (x, y) e

1
2
F (x,y) − µ(y)W (y, x) e−

1
2
F (x,y)

]
.

8. Extensions

The above analysis applies unchanged to overdamped diffu-
sion. By this we mean d−dimensional processes defined in the Itô-
sense by

dxt =
{
χ(xt)

[
F (xt)−∇U(xt)

]
+∇ ·D(xt)

}
dt +

√
2D(xt) dBt (21)

where the d−dimensional vector dBt has independent standard Gauss-
ian white noise components. As the thermal reservoir is assumed to
be in equilibrium the mobility χ(x) = βD(x) equals the diffusion ma-
trix up to the inverse temperature β > 0; they are strictly positive
(symmetric) d × d−matrices. There is a potential U and the force F
represents the nonequilibrium driving. We do not specify here regular-
ity properties or boundary conditions. The unperturbed generator is
here

L = χ(F −∇U) · ∇+∇D · ∇
Equilibrium (5) is regained when F = 0, for ρ ∝ exp−βU . At
t ≥ 0, there is a time-dependent perturbation changing U in (21) into
U − h(t) V . The resulting response relation is exactly the same as in
(9). Its dynamical fluctuation theory is treated in [9].

The diffusions (21) are overdamped because they have forces propor-
tional to velocities. These processes are high damping limits (some-
times called, Smoluchowski limits) of underdamped or inertial stochas-
tic dynamics. We will not give many details here as their treatment
requires the introduction of more notation and of more technicalities.
The important thing though is that the interpretation of the response
relation gets unchanged. We just give one example to highlight some
points:
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Example: Brownian motion under nonequilibrium driving:

We consider a particle with momentum and position (q, p) ∈ R2d un-
dergoing

dq = p dt

dp = −∇U(q) dt + F (q) dt− γp dt + h(t)E dt +
√

2γ/β dB(t)

where γ is the friction. The potential U is assumed sufficiently confining
the particle’s position and allowing a stationary distribution ρ. The
dynamics is nonequilibrium because of the presence of a non-gradient
F . The perturbation is in the form of a constant external field E. We
look at the excesses, first in entropy flux: for a path ω during [0, τ ]

S(ω) = β

∫ τ

0

dt E · p(t) h(t) (22)

is the excess entropy flux by the field E. Secondly, the path-dependent
frenesy (in linear order in h) gives

T (ω) = −β

γ

∫ τ

0

h(t)
[
dt

(∇U − F
)

+ dp(t)
] · E (23)

which is time-symmetric under reversing the paths (together with flip-

ping the momentum).

The response relation has the same form as (9) but where βLV is

replaced by the frenesy (23), yielding the nonequilibrium mobility

δ

δh(s)
〈p(t)〉h (h = 0) =

β

2
〈E · p(s) p(t)〉ρ

+
β

2γ
〈E · [∇U(q(s))− F (q(s))] p(t)〉ρ +

β

2γ

d

ds
〈E · p(s) p(t)〉ρ

The last term vanishes in the overdamped case.
Further extensions could perhaps ask to reduce the noise level or to
demand less regularity of the forces. These are mostly technical issues,
but we should remember that driven nonequilibrium systems are open
systems and the reduced description of their dynamics, after integrating
out the bath degrees of freedom will always show some amount of sto-
chasticity. Whether the reduced dynamics is Markovian, is more subtle
and has to do much more with the right choice of variables. However,
the notions of entropy flux and of frenesy should remain available in
principle and hence, also the generalized response formula.
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