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P. Ziń.
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Homogeneous Bose gas

n bosons on R
d interacting with a 2-body potential v are

described by the Hilbert space L2
s

(

(Rd)n
)

and the

Hamiltonian

Hn = −
∑

i=1

1

2
∆i +

∑

1≤i<j≤n

v(xi − xj)

commuting with total momentum

P n :=
n
∑

i=1

−i∇xi
.

We assume that the potential v decays fast at infinity,

v(x) = v(−x) and v̂(k) ≥ 0.
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System in a box I

We are interested in the properties at fixed density ρ.

Therefore, we enclose the system in Λ = [0, L]d . We

assume that the number of particles equals n = ρV ,

where V = Ld is the volume. The Hilbert space is L2
s(Λ

n).

We replace the potential by its periodization

vL(x) =
1

V

∑

k∈ 2π
L

Zd

eik·x v̂(k).
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System in a box II

The Hamiltonian, with periodic boundary conditions,

equals

HL,n = −
n
∑

i=1

1

2
∆L

i +
∑

1≤i<j≤n

vL(xi − xj)

and has the ground state energy EL,n := inf spHL,n.

The total momentum

PL,n :=
n
∑

i=1

−i∇L
xi

has the spectrum spPL,n = 2π
L

Z
d.
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Infimum of the excitation spectrum

For k ∈ 2π
L

Z
d we set

ǫL,n(k) := inf spHL,n(k) − EL,n.

Let k ∈ R
d. For L → ∞, keeping n

V
= ρ > 0, we set

(informally)

ǫρ(k) := lim
L→∞

ǫL,n(k).
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Boost operator

Define the Boost operator in the direction of the first

coordinate:

U1 := exp

(

i2π

L

n
∑

i=1

xi,1

)

.

We easily compute

U∗
1 PL,n

1 U1 = PL,n
1 + 2πρLd−1,

U∗
1

(

HL,n − 1

2ρLd
(PL,n

1 )2

)

U1 = HL,n − 1

2ρLd
(PL,n

1 )2.

Therefore, in particular

spHL,n(m2πρLd−1ê1) = spHL,n(0) +
m2(2π)2ρLd−2

2
.
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Excitation spectrum of free Bose gas

in finite volume

 

 

L (k)

k2 n
L

2 n
L

-

7



Excitation spectrum of interacting Bose gas

in finite volume
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1-dimensional case

Theorem. In dimension d = 1 we have

ǫ(k + 2πρ) = ǫ(k).

Proof. If Φ

(HL,n − E)Φ = 0,

(PL,n − k)Φ = 0,

then

(HL,n − E)UΦ =
1

L
(2πk + 2π2ρ)UΦ,

(PL,n − k − 2πρ)UΦ = 0.

Then we let L → ∞.
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Excitation spectrum of 1-dimensional

interacting Bose gas

-2 2 
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Conjecture about the infimum

of the excitation spectrum

Conjecture.

(1) The map R
d ∋ k 7→ ǫρ(k) ∈ R+ is continuous.

(2) Let k ∈ R
d. If Lj → ∞,

nj

Ld
j

→ ρ, ks ∈ 2π
Lj

Z
d, then we

have that ǫLj ,nj(kj) → ǫρ(k).

(3) If d ≥ 2, then there exists ccr > 0 such that

ǫρ(k) > ccr|k|.
(4) For some cph > 0, ǫρ(k) ≈ cph|k| for small k.

(5) k 7→ ǫρ(k) is subadditive, that is

ǫρ(k1) + ǫρ(k2) ≥ ǫρ(k1 + k2).
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(1) and (2) can be interpreted a kind of a spectral

thermodynamic limit.

If (1) and (2) are true around k = 0, then there is

no gap in the excitation spectrum. (It is easy to show

that ǫ(0) = 0).

(3) implies the superfluidity of the Bose gas. More

precisely, a drop of Bose gas will travel without friction

as long as its speed is less than ccr.

(4) suggests that speed of sound for at low energies is

well defined and equals cph.

If one can superimpose (almost) independent elementary

excitations, then (5) is true.
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The above conjecture has important physical

consequences.

In particular, it implies the superfluidity of the

Bose gas at zero temperature.

The above conjecture seems plausible.

It is suggested by the arguments going back to

Bogoliubov, Hugenholz, Pines, Bieliaev, as well

as Bijls and Feynman.

Nobody has an idea how to prove it rigorously.

13



Subadditive functions

We say that R
d ∋ k 7→ ǫ(k) ∈ R is subadditive iff

ǫ(k1 + k2) ≤ ǫ(k1) + ǫ(k2), k1,k2 ∈ R
d.

Let R
d ∋ k 7→ ω(k) ∈ R be another function. We define

the subbadditive hull of ω to be

ǫ(k) := inf{ω(k1)+· · ·+ω(kn) : k1+· · ·+kn = k, n = 1, 2, . . . }.

Clearly, the subadditive hull is always subadditive.
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Quadratic Hamiltonians

Consider the Hamiltonian

H =

∫

Rd

ω(k)a∗
kakdk,

and the total momentum

P =

∫

Rd

ka∗
kakdk.

We will call the function ω appearing in H the

elementary excitation spectrum. Clearly, the infimum of

the energy-momentum spectrum of H is equal to the

subadditive hull of ω.
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Excitation spectrum of

free Bose gas
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Hypothethic excitation spectrum of

interacting Bose gas with no “rotons”
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Hypothethic excitation spectrum of

interacting Bose gas with “rotons”
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Criterion for subadditivity

Theorem. (1) Let f be an increasing concave function

with f(0) ≥ 0. Then f(|k|) is subadditive.

(2) Let ǫ0 be subadditive and ǫ0 ≤ ω. Let ǫ be the

subadditive hull of ω. Then ǫ0 ≤ ǫ.

It often happens that the subadditive hull of a function is

equal to zero everywhere. This is the case e.g. when

ω(k) = ck2, which corresponds to the free Bose gas. But

not for superfluid systems:
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Subadditive hulls with phononic shape

and positive critical velocity

Corollary. Suppose that ccr, cs > 0 and ω satisfies

1. ω(k) ≥ ccr|k|;

2. limk→0
ω(k)
|k| = cs.

Let ǫ be the subadditive hull of ω. Then ǫ also satisfies

1. ǫ(k) ≥ ccr|k|;

2. limk→0
ǫ(k)
|k| = cs.
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Landau’s argument for the superfluidity I

We add to H the perturbation u travelling at a speed w:

i
d

dt
Ψt =

(

H + λ
n
∑

i=1

u(xi − wt)
)

Ψt.

We go to the moving frame:

Ψw
t (x1, . . . , xn) := Ψt(x1 − wt, . . . , xn − wt).

We obtain a Schrödinger equation with a

time-independent Hamiltonian

i
d

dt
Ψw

t =
(

H − wP + λ
n
∑

i=1

u(xi)
)

Ψw
t .

Is the ground state HΨgr = EΨgr stable against the

travelling perturbation?
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Bose gas travelling

slower than critical velocity
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Bose gas travelling

faster than critical velocity
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Travelling Bose gas

in finite volume

energy
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Stability

Define the global critical velocity

cL,n
cr := inf

|k|

ǫL,n(k)

|k|

If |w| < cL,n
cr , then the ground state of HL,n remains the

ground state of the “tilted Hamiltonian”, hence it is

stable.

For the free Bose gas we have cL,n
cr = π

L
> 0. In general,

cL,n
cr ≤ π

L
. Hence the global critical velocity is very small

and vanishes in the thermodynamic limit.
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Metastability

Define the restricted critical velocity below the

momentum R as

cL,n
cr,R := inf

{

ǫL,n(k)

|k| k 6= 0, |k| < R

}

.

We expect that for repulsive potentials

cρ
cr,R := lim

L→∞
cL,n
cr,R,

n

V
= ρ,

exists and, in dimension d ≥ 2,

lim inf
R→∞

cρ
cr,R > 0.

We expect metastability against a travelling perturbation

travelling at a smaller speed.
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2nd quantized grand-canonical approach I

Consider the symmetric Fock space Γs(L
2(Λ)). For a

chemical potential µ > 0, we define the grand-canonical

Hamiltonian

HL =

∫

a∗
x(−

1

2
∆x − µ)axdx

+
1

2

∫ ∫

a∗
xa

∗
yv

L(x − y)ayaxdxdy,

= ⊕∞
n=0(H

n,L − µn).

27



2nd quantized grand-canonical approach II

In the momentum representation it equals

HL =
∑

k

(
1

2
k2 − µ)a∗

kak

+
1

2V

∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a
∗
k1

a∗
k2

ak3
ak4

.

The momentum operator equals PL :=
∑

k ka∗
kak.

If EL is the ground state energy of HL, then one can get

the corresponding density by

∂µE
L = −V ρ.
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Infimum of the excitation spectrum

– a rigorous definition I

We define

the ground state energy in the box

EL = inf spHL.

For k ∈ 2π
L

Z
d, we define

the infimum of the excitation spectrum in the box

ǫL(k) := inf spHL(k) − EL.
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Infimum of the excitation spectrum

– a rigorous definition II

For k ∈ R
d we define

the infimum of the excitation spectrum in the

thermodynamic limit

ǫ(k) := sup
δ>0

(

lim inf
L→∞

(

inf
k′

L
∈ 2π

L
Zd, |k−k′

L
|<δ

ǫL(k′
L)

))

.

Proposition. At zero total momentum, the excitation

spectrum has a global minimum where it equals zero:

ǫL(0) = ǫ(0) = 0.
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Conjecture about the infimum

of the excitation spectrum

Conjecture.

(1) The map R
d ∋ k 7→ ǫ(k) ∈ R+ is continuous.

(2) Let k ∈ R
d. If Lj → ∞, kj ∈ 2π

Lj
Z

d, kj → k, then

ǫLj(kj) → ǫ(k).

(3) If d ≥ 2, then there exists ccr > 0 such that

ǫ(k) > ccr|k|.
(4) For some cph > 0 such that ǫ(k) ≈ cph|k| for small k.

(5) k 7→ ǫ(k) is subadditive.
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Minimization among coherent states

For α ∈ C, we define the displacement or Weyl operator

of the zeroth mode: Wα := e−αa∗

0
+αa0 . Set Ωα := WαΩ.

Note that PLΩα = 0. The expectation of the

Hamiltonian in those coherent states equals

(Ωα|HLΩα) = −µ|α|2 +
v̂(0)

2V
|α|4,

and is minimized for α = eiτ
√

V µ√
v̂(0)

.
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Translation of the zero mode

We apply the Bogoliubov translation to the zero mode of

HL by W (α). This means making the substitution

a0 = ã0 + α, a∗
0 = ã∗

0 + α,

ak = ãk, a∗
k = ã∗

k, k 6= 0.

Note that

ãk = W ∗
αakWα, ã∗

k = W ∗
αa∗

kWα,

and thus the operators with and without tildes satisfy

the same commutation relations. We drop the tildes.
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Translated Hamiltonian

HL := −V
µ2

2v̂(0)

+
∑

k

(

1

2
k2 + v̂(k)

µ

v̂(0)

)

a∗
kak

+
∑

k

v̂(k)
µ

2v̂(0)

(

e−i2τ aka−k + ei2τ a∗
ka

∗
−k

)

+
∑

k,k′

v̂(k)
√

µ
√

v̂(0)V
(eiτa∗

k+k′akak′ + eiτ a∗
ka

∗
k′ak+k′)

+
∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)
v̂(k2 − k3)

2V
a∗
k1

a∗
k2

ak3
ak4

.

Let HL
bg denote the first 3 lines of the above expression.
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Translated Hamiltonian with a coupling constant

If we (temporarily) replace the potential v(x) with λv(x),

where λ is a (small) positive constant, the translated

Hamiltonian can be rewritten as

Hλ,L = λ−1HL
−1 + HL

0 +
√

λHL
1

2

+ λHL
1 ,

Thus the 3rd and 4th terms are in some sense small,

which suggests dropping them.
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Bogoliubov rotation

We want to analyze HL
bg. To this end, for nonzero k we

substitute

a∗
k = ckb

∗
k − skb−k, ak = ckbk − skb

∗
−k,

with ck =
√

1 + |sk|2, so that

[bk, b
∗
k′ ] = δk,k′, [bk, bk′ ] = 0.

For the zero mode we introduce p0 = 1√
2
(a∗

0 + a0) and

x0 = i√
2
(a0 − a∗

0).
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Bogoliubov Hamiltonian after rotation

HL
bg = µp2

0 +
∑

k

′
ωbg(k)b∗kbk + EL

bg,

where the elementary excitation spectrum of HL
bg is

ωbg(k) =

√

1

2
k2(

1

2
k2 + 2µ

v̂(k)

v̂(0)
),

and its ground state energy equals

EL
bg = −µ2 V

2v̂(0)
−
∑

k

1

2

(

(1

2
k2 + µ

v̂(k)

v̂(0)

)

− ωbg(k)

)

.
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Zeroth mode

The number α has an arbitrary phase. Thus we broke the

symmetry when translating the Hamiltonian. This is

related to the fact that the zero mode is not a harmonic

oscillator – it has continuous spectrum. The zeroth mode

can be interpreted as a kind of a Goldstone boson.
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Infimum of excitation spectrum

in the Bogoliubov approximation I

The infimum of the excitation spectrum of HL
bg is given

by

ǫbg(k) := inf{ωbg(k1) + · · · + ωbg(kn) :

k1 + · · · + kn = k, n = 1, 2, . . . }.

ωbg(k) and ǫbg(k) have a phononic shape and a positive

critical velocity.
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Infimum of excitation spectrum

in the Bogoliubov approximation II

Replace the potential v(x) with λv(x), where λ > 0. Let

ǫλ(k) be the grand-canonical IES for the potential λv.

Conjecture. Let d ≥ 2. Then for a large class of

repulsive potentials the Bogoliubov method gives the

correct IES in the weak coupling limit:

lim
λց0

ǫλ(k) = ǫbg(k).
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Bogoliubov transformations commuting with

momentum

Let α ∈ C and 2π
L

Z
d ∋ k 7→ θk ∈ C be a sequence with

θk = θ−k. Set

Uθ :=
∏

k

e−
1

2
θka∗

k
a∗

−k
+ 1

2
θkaka−k

Then Uα,θ := UθWα is the general form of a Bogoliubov

transformation commuting with P .
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Improving the Bogoliubov method I

Let Ω denote the vacuum vector. Ψα,θ := U∗
α,θΩ is the

general form of a squeezed vector of zero momentum.

Vectors Ψα,θ,k := U∗
α,θa

∗
kΩ have momentum k, that means

(PL − k)Ψα,θ,k = 0.

Clearly we have bounds

EL ≤ (Ψα,θ|HLΨα,θ)

EL + ǫL(k) ≤ (Ψα,θ,k|HLΨα,θ,k)
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Improving the Bogoliubov method II

After the translation, for all k we make the substitution

a∗
k = ckb

∗
k − skb−k, ak = ckbk − skb

∗
−k,

where

ck := cosh |θk|, sk := − θk

|θk|
sinh |θk|.

Note that

U∗
θ akUθ = bk, U∗

θ a∗
kUθ = b∗k,
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Improving the Bogoliubov method III

HL = BL + CLb∗0 + C
L
b0

+
1

2

∑

k

OL(k)b∗kb
∗
−k +

1

2

∑

k

O
L
(k)bkb−k +

∑

k

DL(k)b∗kbk

+ terms higher order in b’s.

Then

(Ψα,θ|HLΨα,θ) = BL, (Ψα,θ,kL
|HLΨα,θ,k) = BL+DL(k).
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Minimizing the energy in squeezed states I

We look for the infimum of the Hamiltonian among the

states Ψα,θ. This means that B attains a minimum.

Computing the derivatives with respect to α and α we

obtain

C = c0∂αB − s0∂αB

so that the condition:

∂αB = ∂αB = 0

entails C = 0.
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Minimizing the energy in squeezed states II

Computing the derivatives with respect to s and s we

obtain

O(k) =

(

−2ck +
|sk|2
ck

)

∂skB − s2
k

ck
∂skB.

Thus ∂skB = ∂skB = 0 entails O(k) = 0.
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Fixed point equation I

Instead of sk, ck, it is more convenient to use functions

Sk := 2skck,

Ck := c2
k + |sk|2.

We will keep α = |α| eiτ instead of µ as the parameter of

the theory. We can later on express µ in terms of α2:

µ =
v̂(0)

V
|α|2 +

∑

k′

v̂(0) + v̂(k′)

2V
(Ck′ − 1) − ei2τ

∑

k′

v̂(k′)

2V
Sk′ ,

ρ =
|α|2 +

∑

k |sk|2
V

.
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Fixed point equation II

D(k) =
√

f 2
k − |gk|2,

Sk =
gk

D(k)
,

Ck =
fk

Dk

,

fk : =
k2

2
+ |α|2 v̂(k)

V

+
∑

k′

v̂(k′ − k) − v̂(k′)

2V
(Ck′ − 1) +

∑

k′

v̂(k′)

2V
ei2τ Sk′ ,

gk : = |α|2 ei2τ v̂(k)

V
−
∑

k′

v̂(k′ − k)

2V
Sk′ .
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Limit L → ∞

In the thermodynamic limit one should take α =
√

V κ,

where κ has the interpretation of the density of the

condensate. Then one could expect that Sk will converge

to a function depending on k ∈ R
d in a reasonable class

and we can replace 1
V

∑

k

by 1
(2π)d

∫

dk.

In particular,

D(0) =

√

v̂(0)

2V
α2
∑

k

v̂(k)

V
Sk →

√

v̂(0)κ

2(2π)d

∫

v̂(k)Skdk.

Thus it seems to imply D(0) > 0, which would mean that

we have an energy gap in this approximation.
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Perturbative approach based on

the original Bogoliubov method

Recall that if we replace the potential v(x) with λv(x),

the Hamiltonian, after applying the original Bogoliubov

method can be rewritten as

Hλ,L = λ−1HL
−1 + HL

0 +
√

λHL
1

2

+ λHL
1 ,

Unfortunately, perturbation theory is problematic in this

set-up becaus of a serious infra-red problem: the

unperturbed operator has no ground state.
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Perturbative approach based on

the improved Bogoliubov method I

After soving the fixed point equation we can write

Hλ,L = λ−1Hλ,L
−1 + Hλ,L

0 +
√

λHλ,L
1

2

+ λHλ,L
1 ,

where λ−1Hλ,L
−1 = Bλ,L is the constant term,

Hλ,L
1 =

∑

k Dλ,L(k)b∗kbk is the quadratic term,

Hλ,L
1

2

and Hλ,L
1 are respectively the third and fourth order

parts of H in operators bk and b∗k.
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Perturbative approach based on

the improved Bogoliubov method II

Consider the Hamiltonian

Hλ,δ,L := δ−1Hλ,L
−1 + Hλ,L

0 +
√

δHλ,L
1

2

+ δHλ,L
1 ,

where δ is an additional parameter introduced for

bookkeeping reasons, that we use to produce the

perturbation expansion. At the end we set δ = λ.
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Perturbative approach of the old literature I

1. Replace the zeroth mode operator a0 with a

c-number α, obtaining the Hamiltonian Hλ,L(α).

2. Substitute α =
√

λ−1κV and split the Hamiltonian as

Hλ,L(α) = λ−1Hκ,L
−1 + Hκ,L

0 +
√

λHκ,L
1

2

+ λHκ,L
1 .

3. Compute perturbatively the ground state energy:

Eλ,κ,L =
∑

n λnEκ,L
n .

4. Compute the desired quantity.

5. Minimize (up to the desired order in λ) Eκ,L,

obtaining κλ,L as a function of λ, L.

6. Substitute κλ,L into expression for desired quantity.
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Perturbative approach of the old literature II

This approach was used e.g. by Bogoliubov, Beliaev,

Hugenholz-Pines, Gavoret-Nozieres.

It is OK if we compute intensive quantities. E.g. it gives

the correct energy density, as proven by Lieb, Seiringer,

Yngvason.

It is dubious for finer quantities, such as the infimum

excitation spectrum, since we modify the Hamiltonian.
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Various limits

Low density limit. (Rigorous results by Lieb, Seiringer,

Yngvason). Fix the potential v, fix the density ρ, go to

themodynamic limit L → ∞, consider the leading

behavior of the desired quantity for small ρ.

Gross-Pitaevski limit. (Rigorous results by Lieb,

Seiringer, Yngvason). Fix the potential v, fix n/L, go to

themodynamic limit L → ∞. (Very low density).

Weak coupling limit. (Adapted to the Bogoliubov

method, implicit in Bogoliubov, Hugenholz-Pines,

Gavoret-Nozieres, etc.) Fix µ, consider the potential λv,

go to themodynamic limit L → ∞ with a small λ. (Very

high density).
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