A SUSY model of quantum transport in a random environment

Joint work with:
M. Disertori and M. Zirnbauer

June 9, 2009

Motivation

To study time evolution of *quantum* particle in a random environment using **SUSY** Statistical Mechanics.

Averages of Greens functions can be expressed *exactly* as correlations in a **SUSY** Statistical Mechanics Model. (F.Wegner, K. Efetov)

Advantages: Disorder is integrated out, Saddle point analysis can be applied, Symmetries governing universality emerge. Extended states closely connected to symmetry breaking.

Disadvantages: Spin is a 4x4 supermatrix, lack of positivity, Hyperbolic SU(1,1|2) Symmetry.

Main Result

Theorem: "Diffusion" for a Simpler 3D SUSY Hyperbolic Sigma model.

Spin has 4 components: $(t_j, s_j, \psi_j, \overline{\psi_j})$ s, t real, $j \in \mathbb{Z}^3$

Model expected to reflect Localization-Diffusion phenomena.

Equivalent to random walk in a correlated random environment.

Random environment is given by a **real**, **non convex**, **nonlocal** action obtained after integrating out Grassmann ψ_j , $\overline{\psi_j}$.

Ingredients of Proof:

Need to estimate fluctuations of the environment.

Key is to use **SUSY** Ward Identities. Eg. $Z(\beta_{ij}) \equiv 1$

Estimates on **nonuniformly** elliptic equations.

Control fluctuations on scale ℓ , by induction.

No cluster expansion.

Relation to Edge Reinforced Random Walk?

This *history* dependent random walk favors edges it has visited in the past.

It is also equivalent to a random walk in a *correlated* random environment (Diaconis).

This environment looks very much like ours!

Localization in 1D , Merkl and Rolles Use a Mermin-Wagner type argument to estimate fluctuations of the environment - good lower lower bounds on localization length. Partial results in 2D.

Quantum Green's Function

Let **H** denote a random band matrix or Schrödinger operator.

$$G_{\epsilon}(E;x,y)\equiv (\mathbf{H}-E+i\epsilon)^{-1}(x,y).$$

Q-Diffusion Conjecture in 3D:

$$<|G_{\epsilon}(E;x,y)|^2>\cong \frac{\rho(E)}{-D\Delta+\epsilon}(x,y)\approx C(|x-y|+1)^{-1}$$

$$\rho(E) = Im \langle G_{\epsilon}(E; 0, 0) \rangle = \text{density of states.}$$

D = D(E) > 0 is diffusion constant.

Localization:

$$< |G_{\epsilon}(E;x,y)|^2 > \cong \epsilon^{-1} e^{-|x-y|/\ell}$$

SUSY Hyperbolic Sigma model

Sigma constraint:
$$-z_j^2 + x_j^2 + y_j^2 + 2\overline{\psi_j}\psi_j = -1$$
.

Action A in horospherical coordinates:

$$t_j, s_j \in \mathbb{R}, \ \ \text{and} \ \ \overline{\psi}_i, \psi_j \ \ \ \textit{Grassmann}$$

$$\mathbf{A}_{\epsilon}(\mathbf{t},\mathbf{s},\psi) \equiv \mathbf{\Sigma}_{\mathbf{j} \sim \mathbf{j}'}(\mathsf{cosh}(\mathbf{t}_{\mathbf{j}} - \mathbf{t}_{\mathbf{j}'}) - 1) + \frac{\epsilon}{\beta} \sum_{\mathbf{j}} \mathsf{cosh} \ \mathbf{t}_{\mathbf{j}}$$

$$+\sum_{\mathbf{j}\sim\mathbf{i}'}\mathbf{e}^{(\mathbf{t_j}+\mathbf{t_{j'}})}\Big[rac{1}{2}(\mathbf{s_j}-\mathbf{s_{j'}})^2+(\overline{\psi}_{\mathbf{j}}-\overline{\psi}_{\mathbf{j'}})(\psi_{\mathbf{j}}-\psi_{\mathbf{j'}})\Big]$$

$$Z=\int \mathrm{e}^{-eta A_{\epsilon}(t,s,\psi)}\prod_{j}\mathrm{e}^{-t_{j}}dt_{j}ds_{j}d\psi_{j}d\overline{\psi_{j}}\equiv 1$$

Elliptic generator **D** with random conductances

For $t_j \in \mathbb{R}$, define **D(t)** via the quadratic form:

$$(f, \mathbf{D}_{\beta}(t) f) = \beta \sum_{j \sim j'} e^{t_j + t_{j'}} (f(j) - f(j'))^2.$$

D is the generator of *random walk in the random environment* of the t field. **D** is **not** uniformly elliptic.

If $e^{(t_j+t_{j'})} \sim 1$ then there is **diffusion**.

However, if $\langle e^{t_j/2} \rangle_{\beta,\epsilon} \langle <1$, then conductance goes to zero and **localization** occurs. Known in 1D and expected in 2D

Relation to Quantum-Green's Function

$$< |G_{\epsilon}(E; x, y)|^{2} >_{RM} \cong < s_{x}e^{t_{x}}s_{y}e^{t_{y}} >_{SUSY} (\beta, \epsilon)$$

$$= < [\beta \mathbf{D} (t) + \epsilon e^{t}]^{-1}(x, y)e^{t_{x} + t_{y}} >_{SUSY} (\beta, \epsilon)$$

$$= < [-\beta \Delta + V(t) + \epsilon e^{-t}]^{-1}(x, y) >_{SUSY} (\beta, \epsilon)$$

$$\beta \sim \text{density of states } \rho(E), \text{ times band width.}$$

Main Theorem: "Diffusion" in 3D (Di-Sp-Zi):

For β large, local conductance $e^{t_j+t_{j'}}\sim 1$, hence :

$$< e^{t_0 + t_x} [\beta \mathbf{D}(t) + \epsilon e^t]^{-1}(0, x) >_{SUSY} (\beta)$$

 $\approx (-\beta \Delta + \epsilon)^{-1}(0, x) \approx C|x|^{-1}$

So, the evolution is "Diffusive".

Conjecture: For **small** β , **localization** occurs in 3D: $\langle e^{t_j/2} \rangle \rightarrow 0$ as $\epsilon \rightarrow 0$, conductance vanishes.

Saddle point

Let $B_{\beta,\epsilon}(t)$ be effective action (after integrating out s and ψ).

 $B_{eta,\epsilon}(t)$ a unique minimum at t_s , depending on eta and ϵ :

$$\epsilon e^{-t_s} = 1/\beta$$
 1 Dim
$$\epsilon e^{-t_s} = e^{-\beta}$$
 2 Dim
$$t_s \cong 0$$
 3 Dim for β large
$$\epsilon e^{-t_s} \sim 1$$
 3 Dim for β small

Saddle suggests that localization occurs in 1 and 2 dimensions and diffusion occurs in 3D. Zirnbauer proved localization in 1D.

Ward Identities are Key to Proof

To estimate the conductance, we first bound the *fluctuations* of the t field,

$$< \cosh^m(t_0 - t_\ell) > (\beta, \epsilon) \le Const.$$

by induction on $|\ell|$ and Ward identities:

Example: For $\ell \in \mathbb{Z}^d$, let

$$\begin{split} \textit{F}_{\ell} &= \textit{cosh}(\textit{t}_{0} - \textit{t}_{\ell}) + \ e^{\textit{t}_{0} + \textit{t}_{\ell}} \Big[\frac{1}{2} (\textit{s}_{0} - \textit{s}_{\ell})^{2} + (\overline{\psi}_{0} - \overline{\psi}_{\ell}) (\psi_{0} - \psi_{\ell}) \Big] \end{split}$$

$$\textit{Then} \ < \textit{F}_{\ell}^{\textit{m}} > = 1 \ \textit{all } \textit{m} \geq 1. \end{split}$$

After integrating over the ψ and s variables

The Ward identity $< F_\ell^m> = 1$ yields:

$$< cosh^m(t_0-t_\ell)(1-rac{m}{eta}G_\ell(t))>=1$$

where G_{ℓ} is the Green's function of D(t).

If
$$0 \leq G_\ell(t) \leq \mathbf{C}$$
, then for $\mathbf{C}m < eta$ $< cosh^m(t_0 - t_\ell) > \leq (1 - rac{\mathbf{C}m}{eta})^{-1}$

Thus t - fluctuations at scale ℓ are small for large β .

Conclusions and open Problems

Quantum Dynamics \approx SUSY hyperbolic model = RWRE.

In our Hyperbolic SUSY model, localization and diffusion are revealed using a simple **saddle** analysis. But **fluctuations** need to be **estimated**. We do this in 3D for large β .

Once the Ward identities are established, analysis is classical: Induction on length scales + estimates on elliptic Greens functions.

Problem: Prove Localization in 2D and Phase Transition in 3D.