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Goal: describe statistical properties of eigenvalues of N × N

matrices with random entries, in the limit N →∞.

Here we will restrict attention to Wigner matrices (entries are

independent and identically distributed random variables).

Wigner matrices have been introduced by Wigner to describe

excitation spectrum of heavy nuclei.

First step towards understanding of more complicated ensembles

of random matrices (i.e. band matrices) and random Schrödinger

operators (Anderson model) in the metallic phase.
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Hermitian Wigner Matrices: N×N matrices H = (hkj)1≤k,j≤N
such that H∗ = H and

hkj =
1√
N

(
xkj + iykj

)
for all 1 ≤ k < j ≤ N

hkk =
2√
N
xkk for all 1 ≤ k ≤ N

where xkj, ykj and xkk (1 ≤ k ≤ N) are iid with

Exjk = 0 and Ex2
jk =

1

2

(
⇒ E |hjk|2 =

1

N

)

Remark: scaling guarantees that eigenvalues λα remain finite as

N →∞.

E
N∑
α=1

|λα|2 = E Tr H2 = E
N∑

j,k=1

|hjk|2 = N2 E |hjk|2

⇒ E|hjk|2 = O(N−1)
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Semicircle Law (Wigner, 1955): for any δ > 0,

lim
η→0

lim
N→∞

P
(∣∣∣∣∣N [E − η

2;E + η
2]

Nη
− ρsc(E)

∣∣∣∣∣ ≥ δ
)

= 0

where

N [I] = number of eigenvalues in interval I

ρsc(E) =
1

2π

√
1− E2/4.

Remark 1: semicircle independent of density of entries.

Remark 2: Wigner result concerns the macroscopic density, that

is the density in intervals containing order N eigenvalues.
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Gaussian Unitary Ensemble (GUE): simplest example of her-

mitian Wigner ensemble.

Big advantage: joint eigenvalue distribution is explicit

p(λ1, . . . , λN) = const ·
N∏
i<j

(λi − λj)2 e
−N2

∑N
j=1 λ

2
j .

Dyson’s sine-kernel distribution for GUE: let

p(k)(λ1, . . . , λk) =
∫

dλk+1 . . .dλN p(λ1, . . . , λN)

be the k-point correlation function. Then

1

%ksc(E)
p(k)

(
E +

x1

N%sc(E)
, ..,E +

xk
N%sc(E)

)
→ det

(
sin(π(xi − xj))

π(xi − xj)

)
i,j≤k

Universality Conjecture: Dyson’s sine-kernel describes local

eigenvalue distribution of every hermitian Wigner ensemble.
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Semicircle law on microscopic scales: what can be said about
density in small intervals?

Theorem 1 [Erdős-S.-Yau, 2008]: Suppose E eνx
2
ij < ∞ for

some ν > 0, and fix |E| < 2.

Then, for δ > 0 sufficiently small,

P

∣∣∣∣∣∣
N
[
E − K

2N ;E + K
2N

]
K

− ρsc(E)

∣∣∣∣∣∣ ≥ δ
 ≤ Ce−cδ√K

for all K > 0, uniformly in N > N0(δ).

Semicircle law holds up to microscopic scales; this only involves
average over finitely many eigenvalues.

On intermediate scales, if η(N) → 0 such that Nη(N) → ∞, we
have

lim
N→∞

P


∣∣∣∣∣∣∣
N
[
E − η(N)

2 ;E + η(N)
2

]
Nη(N)

− ρsc(E)

∣∣∣∣∣∣∣ ≥ δ
 = 0
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Delocalization of eigenvectors: let v = (v1, . . . , vN) be an `2-

normalized vector in CN . Distinguish two extreme cases:

Complete localization: one large component, for example

v = (1,0, . . . ,0) ⇒ ‖v‖p = 1, for all 2 < p ≤ ∞

Complete delocalization: all components have same size,

v = (N−1/2, . . . , N−1/2) ⇒ ‖v‖p = N−1/2+1/p � 1

.

Theorem [Erdős-S.-Yau, 2008]: Suppose E eνx
2
ij <∞ for some

ν > 0, fix |E| < 2, K > 0, 2 < p <∞. Then

P
(
∃v : Hv = µv, |µ− E| <

K

N
, ‖v‖2 = 1, ‖v‖p ≥MN

−1
2+1

p

)
≤ Ce−c

√
M

for all M , N large enough.
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Level Repulsion [Erdős-S.-Yau, 2008]: Suppose E eνx
2
ij < ∞

for some ν > 0, fix |E| < 2.

Fix k ≥ 1, and assume that the probability density h(x) = e−g(x)

of the matrix entries satisfies the bound∣∣∣ĥ(p)
∣∣∣ ≤ 1

(1 + Cp2)σ/2
,

∣∣∣ĥg′′(p)
∣∣∣ ≤ 1

(1 + Cp2)σ/2
for σ ≥ 5+k2.

Then there exists a constant Ck > 0 such that

P
(
N
[
E −

ε

2N
;E +

ε

2N

]
≥ k

)
≤ Ck εk

2

for all N large enough, and all ε > 0.

Remark: for GUE, we have

p(λ1, . . . , λN) '
∏
i<j

(λi − λj)2 ⇒ P(Nε ≥ k) ' εk
2
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Universality of sine-kernel: assume the density of the matrix

elements h(x) = e−g(x) ≤ Ce−c|x|, with g ∈ C6(R) and

6∑
j=1

|g(j)(x)| ≤ C(1 + x2)k

for some k ∈ N.

Theorem [Erdős-Ramirez-S.-Yau, 2009]: For any |u| < 2 and

for any bounded O ∈ L∞c (R2) with compact support, we have

lim
N→∞

∫
R2
O(α, β)

1

[%sc(u)]2
p(2)

(
u+

α

N%sc(u)
, u+

β

N%sc(u)

)
dαdβ

=
∫
R2
O(α, β)

[
1−

(
sinπ(α− β)

π(α− β)

)2]
dαdβ.
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Remarks:

• Assuming more regularity of density, our result extends to

higher order correlation functions

1

[ρsc(u)]k
p(k)

(
u+

x1

ρsc(u)N
, ...,u+

xk
ρsc(u)N

)
→ det

(
sinπ(xi − xj)
π(xi − xj)

)
1≤i,j≤k

• Shortly after we posted our paper, T. Tao and V. Vu submitted

a paper with the same result. Assuming vanishing third moment

and exponential decay of the matrix entries, they essentially do

not require any regularity of density.

Their method makes use of our results on the microscopic con-

vergence to the semicircle and on the delocalization of the eigen-

vectors.
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Universality for Johansson Matrices: in 2001, K. Johansson

proved universality for matrices of the form

H = H0 + t
1
2 V

where V is a GUE-matrix, and H0 is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of H0 evolve

under a Brownian motion up to time t (more prec. t/N).

The distribution of the eigenvalues of the matrix evolves then

according to Dyson’s Brownian motion

dλα =
dBα√
N

+
1

N

∑
β 6=α

1

λα − λβ
dt, 1 ≤ α ≤ N

where {Bα : 1 ≤ α ≤ N} is a collection of independent Brownian

motion.
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The joint probability distribution of the eigenvalues x = (x1, . . . , xN)
of H is

p(x) =
∫

dy qt(x; y) p0(y)

where p0 is the distribution of the eigenvalues y = (y1, . . . , yN)
of H0 and

qt(x; y) =
NN/2

(2πt)N/2

∆N(x)

∆N(y)
det

(
e−N(xj−yk)2/2t

)N
j,k=1

,

with the Vandermonde determinant

∆(x) =
N∏
i<j

(xi − xj) = det


1 1 . . . 1
x1 x2 . . . xN
. . . . . . . . . . . .

xN1 xN2 . . . xNN


This can be proven using the Harish-Chandra/Itzykson-Zuber
formula∫
U(N)

e−
N
2t Tr (U∗R(x)U−H0(y))2

dU =
1

∆(x)∆(y)
det

(
e−

N
2t(xj−yi)

2
)

1≤i,j≤N
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The k-point correlation function of p is therefore given by

p(k)(x1, . . . , xk) =
∫
q

(k)
t (x1, . . . , xk; y) p0(y)dy

where

q
(k)
t (x1, . . . , xk; y) =

∫
qt(x; y) dxk+1 . . .dxN

=
(N − k)!

N !
det

(
Kt,N(xi, xj; y)

)
1≤i,j≤k

with

KN,t(u, v; y) = N
eN(v2−u2)/2t

(2πi)2(v − u)t

×
∫
γ

dz
∫

Γ
dw(1− eN(v−u)z/t)

N∏
j=1

w − yj
z − yj

×
1

z

(
w + z − v −

t

N

∑
j

yj

(w − yj)(z − yj)

)
eN(w2−2vw−z2+2uz)/2t

where γ is the union of two horizontal lines and Γ is a vertical

line in the C-plane.
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Convergence of k-point correlation follows from

1

N%(u)
Kt,N(u+

α

N%(u)
, u+

β

N%(u)
; y)→

sinπ(β − α)

π(β − α)
for a.e. y

To prove convergence of Kt,N Johansson uses identity

1

N%(u)
Kt,N

(
u, u+

τ

N%
; y
)

= N
∫
γ

dz

2πi

∫
Γ

dw

2πi
hN(z, w)gN(z, w)eN(fN(w)−fN(z))

with

fN(z) =
1

2t
(z2 − 2uz) +

1

N

∑
j

log(z − yj)

gN(z, w) =
1

tz
[w + z − u]−

1

Nz

∑
j

yj

(w − yj)(z − yj)

hN(z, w) =
1

τ

(
e−τw/t% − e−τ(w−z)/t%

)
and performs a detailed asymptotic saddle analysis.
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Universality with small Gaussian part: what if t = t(N)→ 0?

Consider

t = N−1+ε

Same integral representation but asymptotic analysis is more

delicate and requires microscopic convergence to the semicircle.

Recall that

1

N%(u)
Kt,N

(
u, u+

τ

N%(u)
; y
)

= N
∫
γ

dz

2πi

∫
Γ

dw

2πi
hN(z, w)gN(z, w)eN(fN(w)−fN(z)) .

with

fN(z) =
1

2t
(z2 − 2uz) +

1

N

∑
j

log(z − yj)
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Saddles are determined by the equation

f ′N(z) =
1

t
(z − u) +

1

N

∑
j

1

z − yj
= 0

There are two complex conjugated solutions z = q±N .

By the convergence to the semicircle on scales of order N−1+ε,

we have, with high probability,

q±N = q±+O(tN−ε/2)

where

q± = u(1− 2t)± 2ti
√

1− u2 +O(tN−ε/2)

are the two solutions of

1

t
(q± − u) +

∫
%sc(y)

q± − y
dy = 0
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The integration paths can be shifted to pass through the saddles.

Only important contribution arises from z, w both close to qN,±.

Contribution from saddles can be computed through local change

of variable which makes the exponent quadratic (Laplace method).

As N →∞, saddle contribution leads to sine-kernel.

This gives convergence to sine-kernel for Wigner ensembles

H = H0 + t
1
2 V for t = N−1+ε

Remark: If matrix elements evolve through Ornstein-Uhlenbeck

process, this method proves sine-kernel for Wigner ensembles

H = e−t/2H0 + (1− e−t)1/2V for t = N−1+ε
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Removal of Gaussian part: let h(x) be the density of the matrix

elements of H0.

The matrix elements of H = H0 + t
1
2 V have density

ht(x) = (etLh)(x), with L =
1

2

d2

dx2

Then ∫ |ht(x)− h(x)|2

h(x)
dx ≤ Ct2

Letting F = h⊗N
2

and Ft = (etLh)⊗N
2

we find∫ |Ft − F |2
F

dx1 . . . dxN2 ≤ CN2t2

It is only small for t� N−1.

Hence t = N−1+ε is still not enough
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Idea of time reversal: we would like to write

h = etLf with f = e−tLh

as a Gaussian convolution.

But the heat equation cannot be reversed.

⇒ approximate inversion of heat semigroup

Define vt = (1− tL)h. Then

etLvt = etL(1− tL)h ' h+ t2L2h
(
while etLh ' h+ tLh

)
Therefore ∫ |ht − h|2

h
dx ≤ Ct4

Hence, if F = h⊗N
2

and Ft = h⊗N
2

t , we find∫ |Ft − F |2
F

dx1 . . . dxN2 ≤ CN2t4 � 1 for t = N−1+ε
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Rate of convergence can be improved with better approximation

of inverse evolution.

To prove that the 2-point correlation functions of Ft and F are

asymptotically equal, we need vt = (1− tL+ t2L2/2)h.

⇒ etLvt − h ' t3L3h

This explains the condition h ∈ C6(R).

To prove convergence for higher marginals, we need higher order

approximations (and hence more regularity).

For this idea to work, we need vt to be a probability density.

vt is automatically normalized, with correct mean and variance.

We have to make sure that vt is non-negative! This leads to

assumption h(x) = e−g(x) where g does not grow too fast.
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