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Outline

@ Introduction
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The problem

“Obvious” fact

Waves in a disordered environment diffuse.
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The problem

“Obvious” fact
Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we

are very far from having a good mathematical understanding of this

phenomenon.!
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The problem
“Obvious” fact
Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we

are very far from having a good mathematical understanding of this

phenomenon.!

!Actually it is well understood in certain limiting regimes. Maybe that is good
enough?
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For example

i00p(x) = — Y W(y) + Av()e(x), ¥ e P(z),

ly—x|=1
@ )\ small

@ v, random

Does

lim —Z|x| [Ye(x)? = D > 07
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For example

i0(x) = — Y (y) +Avu(x)e(x), € (z),

ly—x|=1

@ )\ small

@ v, random

Does

. 2 2
— = ?
tllm 5 EX |x|= e (x)| D > 0

o Erdos, Salmhofer, Yau: yes if you take A — 0 with t and rescale D.
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Why diffusion?

@ multiple scattering = build up of random phases
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@ loss of coherence = “classical” propagation (absence of
interference)
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Why diffusion?

multiple scattering = build up of random phases

build up of random phases = loss of coherence

loss of coherence = “classical” propagation (absence of
interference)

o classical random scattering = diffusion (central limit theorem)
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Why diffusion?

multiple scattering = build up of random phases

build up of random phases = loss of coherence

loss of coherence = “classical” propagation (absence of
interference)

o classical random scattering = diffusion (central limit theorem)

There are mathematical difficulties with every step of this argument. J
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Recurrence

One key difficulty is recurrence: the wave packet may return often to
regions visited previously.

@ Makes loss of coherence imprecise

@ Makes central limit theorem hard
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Recurrence

One key difficulty is recurrence: the wave packet may return often to
regions visited previously.

@ Makes loss of coherence imprecise

@ Makes central limit theorem hard

So let's get rid of recurrence:
Make the potential time dependent with short correlations.
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Time dependent potentials

o Why?
o Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))

Jeffrey Schenker (MSU) Diffusion of waves 9 June 2009 7/



Time dependent potentials

o Why?

o Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))

o More fundamentally reason: to have a rigorous mathematical model of
wave diffusion.
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Time dependent potentials

o Why?
o Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
o More fundamentally reason: to have a rigorous mathematical model of
wave diffusion.

@ It is more or less clear that one should expect diffusion (and only

diffusion) from time dependent models!.
Can we prove it?

Ywith a UV cut-off
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wave diffusion.
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Time dependent potentials

o Why?
o Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
o More fundamentally reason: to have a rigorous mathematical model of
wave diffusion.

@ It is more or less clear that one should expect diffusion (and only
diffusion) from time dependent models!.
Can we prove it?
o Ovvchinnikov and Erikhman (JETP 40 (1974)):
Gaussian white noise potential = diffusion.
o Pillet (CMP 102 (1985)):
Transience of the wave packet.
A very useful formula for a Markov potential.

lwith a UV cut-off
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Time dependent potentials

o Why?
o Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
o More fundamentally reason: to have a rigorous mathematical model of
wave diffusion.

@ It is more or less clear that one should expect diffusion (and only
diffusion) from time dependent models!.
Can we prove it?
o Ovvchinnikov and Erikhman (JETP 40 (1974)):
Gaussian white noise potential = diffusion.
o Pillet (CMP 102 (1985)):
Transience of the wave packet.
A very useful formula for a Markov potential.
e Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
Markov potential = diffusive scaling up to logarithmic corrections.

lwith a UV cut-off
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© The Markov tight binding Schrodinger equation
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Markov process

A random path w(t) in some topological space Q:
e Distribution of w(- + t) given w(s), 0 < s < t, depends only on w(t).
@ Precise definition with o-algebras and transition measures.

@ The increments of the process have no memory
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Markov process

A random path w(t) in some topological space Q:
e Distribution of w(- + t) given w(s), 0 < s < t, depends only on w(t).
@ Precise definition with o-algebras and transition measures.

@ The increments of the process have no memory — w(t) and w(s)
can still be correlated.

9 /29
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Markov tight binding Schroedinger equation

i0cbe(x) = Y h(QW(x =€) + ux(w(t))¥(x)
¢

with
o > [CPIA(Q)] < oo

@ w a Markov process.!

@ uy : Q — R bounded measurable functions

lwith cadlag paths.
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Markov tight binding Schroedinger equation

i0cbe(x) = Y h(QW(x =€) + ux(w(t))¥(x)
¢

with
o > [CPIA(Q)] < oo

@ w a Markov process.!

@ uy : Q — R bounded measurable functions

What do we need to know about h, uy and w to prove diffusion? l

lwith cadlag paths.
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Simple Example

The “flip” model

@ Suppose Q = {—1, l}Zd, so each element w is a field of &1 spins.
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Simple Example

The “flip” model

@ Suppose Q = {—1, l}Zd, so each element w is a field of &1 spins.

o Let uy(w) = w(x) = spin at x.
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Simple Example

The “flip” model

@ Suppose Q = {—1, l}Zd, so each element w is a field of &1 spins.

o Let uy(w) = w(x) = spin at x.
o Let w(x) evolve in time, independently of all other spins, so that it
flips at the times 0 < t1(x) < t2(x) < --- of a Poisson process.
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Simple Example

The “flip” model

@ Suppose Q = {—1, l}Zd, so each element w is a field of &1 spins.

o Let uy(w) = w(x) = spin at x.

o Let w(x) evolve in time, independently of all other spins, so that it
flips at the times 0 < t1(x) < t2(x) < --- of a Poisson process.
Then

i=2 N okok
lim Y e VTR (wat(x)y2> = ||ao||? et 2 Duikiki,
T—00
X
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21
lim 7 e VE ([0 ())?) = (et Pk
T—00
X

— Tlgmoof‘z’;mﬁr—oE(wn(oF) — ol (F;)e-'?)‘f.

SIS

in the sense of distributions.
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1 Ir=

. —iLk —tST D kik
lim S eTFOE (0P = (e T Ok
X

. d
= lim 73 > w(vrr = OF ([6n(QP) — llwol?
T—00
¢
in the sense of distributions.
@ Mean square amplitude of the wave packet converges in a scaling
limit to the fundamental solution of a heat equation.
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1 i Ll

lim 37 TIE (i (R) = et Ok
> w(vre = OF (|6re(OFF) = ol

. d
= lim 72
T—00
¢
in the sense of distributions.
@ Mean square amplitude of the wave packet converges in a scaling
limit to the fundamental solution of a heat equation.
= D.

@ We also show that
|
Jim =37 xPE (|4
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@ (Stationarity): Invariant probability measure p on Q
o Bernoulli with p=1/2 in the flip model.
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@ (Stationarity): Invariant probability measure p on Q
o Bernoulli with p=1/2 in the flip model.
@ (Translation invariance): uy = ugp o Tx with 75 : Q — Q measure
preserving maps, Tx © Ty = Tx4y
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@ (Stationarity): Invariant probability measure p on Q
o Bernoulli with p=1/2 in the flip model.
@ (Translation invariance): uy = ugp o Tx with 75 : Q — Q measure
preserving maps, Tx © Ty = Tx4y

© (Markov generator):
Sif(w) = E(f(w(t))|w(0) = w)

defines a strongly continuous contraction semi-group on L?(£2), so we
have S; = e tB for some maximally dissipative operator B.
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Conditions on the generator

@ (Gap condition): A strict spectral gap for the generator B

Re(f, Bf>L2(Q) 7 <f f L2 y |f / 0
@ (Sectoriality):

Im (£, Bf)| 2(q) < v Re(f, Bf) 2
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Conditions on the generator

@ (Gap condition): A strict spectral gap for the generator B

Re(f, Bf>L2(Q) 7 <f f L2 y |f / 0
@ (Sectoriality):

Im (£, Bf)| 2(q) < v Re(f, Bf) 2

Exponential return to equilibrium

Taken together these imply S;f — 1 exponentially fast
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Result

Theorem (Kang and S. 2009)

Under the above assumptions, if for all x # y

g 1B (ux = uy)|[ 2 > O ()

and if the hopping is non-trivial,* then
il ks
lim D7 e VPE ([re()[?) = e PR g
T—00 x

with D; j a positive definite matrix.

e B7lu, and B71u, independent (as in the flip model) = (»):

HBil(uX - UY)H2 = var(B~tuy) +var(B~tuy) = 2var(B™up).

13 (k- €)?h(¢) # O for all k € R?\ {0}.
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Periodic potentials

Theorem (Hamza, Kang and S. 2009)

In place of (x) suppose that uy is periodic, uyyic = ux V(€ 79 with
some L > 2 and

iy 187 (o = ) ) > (%)

where Ap = [0, L]9. Then

—iLk-x — .. D; -k
Jim 2B () = [ e RO p)ap

727T]d

with D; j(p) positive definite for all p and wy,(p) > 0.

@ Superposition of diffusions.

@ Example: translate a periodic potential by a continuous time random
walk.
Jeffrey Schenker (MSU)
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Outline

© Proof
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Density matrix

pe(x,y) = e(x)e(y)",
o pi(x,x) = |¢t(X)|2~

@ Linear evolution:
Oepe(x,y) = 12’7 ) [pe(x = C,y) = pe(x,y + €)]

— 1 (ux(w(t)) = uy(w(2))) pe(x, )
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Feynman-Kac and Augmented space

Pillet 1985

_ —tL
E (pe(x,y)) = <5x @0y @1, 00 & 1>L2(Zd><ZC’><Q) '
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Feynman-Kac and Augmented space

Pillet 1985

_ —tL
]E(pt(X,}/)) - <5X ®5Y ®Le "m® 1>L2(dedeQ) '

o “Augmented” space: L?(Z9 x 79 x Q) = (?(729) @ 1?(29) @ L2(Q).
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Feynman-Kac and Augmented space

Pillet 1985

_ —tL
E (pe(x,y)) = <5x B0y @160 & 1>L2(Zd><ZC’><Q) '

o “Augmented” space: L?(Z9 x Z9 x Q) = (?(Z9) ® *(29) @ L2(Q).

@ Generator

LVU(x,y,w) = 1) h(Q)W(x = (y,w) = W(x,y +(w)]
¢

KWV (x,y,w)
+1 (ux(w) - u}’(w))\u(xvva) +B\U(X7y7w)

VY (x,y.w)
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Translation Symmetry

[SﬁaL]:i[vaK]"i_i[Sf? V]+[S§78]:0
SeV(x,y,w) = WU(x =&y —§ Tew).
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Translation Symmetry

[SﬁaL]:i[vaK]"i_i[Sf? V]+[S§aB]:O
SeV(x,y,w) = WU(x =&y —§ Tew).

@ Fourier transform

\TJ(x,w,k) = Ze_ik'CSC\IJ(x,O,w) = Ze_ik'C\U(X—C,—C,TCw).
¢ ¢

o Partially diagonalizes L.
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Bloch decomposition

B(pxiy)) = [

L oiky <5X_y ® 1,6 Gox @ 1> de(k).

[2(Z9%xQ)
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Bloch decomposition

B(pxiy)) = [

—iky 5 91,61 ae(k).
Tde < y®Le POk @ >L2(Zd><§2) ()

@ Generator

Lb(x,w) = 13 Q) [#lx = Gw) — e Cp(x — ¢, 7ew)]
¢

!A(kc,ﬁ(xw)
+i (UX(W) - UO(W))(Z5(X7 OJ) +B¢(X7w)'
Vo (xw)
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Bloch decomposition

B(pxiy)) = [

—iky (5 91,05, 01 ae(k).
[ e (Gy@LeMono1) o dik)

@ Generator

Lp(xw) = 13 h(Q) [#lx = Gw) — e ™ — ¢ mew))

¢
Kicd(x,w)
+ 1 (ux(w) — vo(w))d(x, w) +Bd(x,w).
Vo(x)

® fok(x) = Yoce ™ po(x — ¢, —().
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Diffusively rescaled Feynman-Kac

—1%kX _ _th T,
S B ) = (08l M Ry on) L
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Diffusively rescaled Feynman-Kac

—iLkx _ ~rtly 75
S B ) = (8L B Tyr @) o o

o Diffusion = good control over e~ tt for k ~ 0.
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Diffusively rescaled Feynman-Kac

—iLtkx ) ~
SR (e x) = (Bo® Lo By 0 1)

2(7d ’
. L2(Z9%Q)

@ Diffusion = good control over e~ the for k ~ 0.
@ Strategy:

@ Understand k = 0.
@ Use perturbation theory.
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Block decomposition for ZO

@ Block decomposition

io_ (0 iPyV
7 \iVPy PLIPE

over Ho & Hy with

Ho = 2(29) @ {1}, Hp = {qﬁ(x,w) : /Q(b(x,w)du(w) = O} )
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Block decomposition for ZO

@ Block decomposition

io_ (0 iPyV
7 \iVPy PLIPE

over Ho & Hy with

Ho = 2(29) @ {1}, Hp = {qﬁ(x,w) : /Q(b(x,w)du(w) = O} )

° ZO(SO ® 1 =0, because

Y E(pe(x,x)) =Y polx, x).
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Spectral gap for /L\o

;o_ [0 iPyV
O 7 \iVPy PLLoPE

o RePgLoPy = Py-BPy > 1Pg-
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Spectral gap for /L\o

;o_ [0 iPyV
O 7 \iVPy PLLoPE
o RePgLoPy = Py-BPy > 1Pg-
o Schur:! IfRez < 1/T then Lo — z is invertible if and only if
~ ~ -1 <
M(z) = PoV (PyLoPs —2)  VPy—2

is invertible.

2
021—TRez lulls,

Rel(z) > - —
144 (TllAlloo + 2T Jullo + 1)

2 (1 - n0)7

@ [y = projection onto dp ® 1.

1

Q eshbach. or Krein
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Spectral gap for /L\o

Lemma

There is § > 0 such that

o(lo) = {O}UT, (1)

where
© 0 /s a non-degenerate eigenvalue, and
Q@ X, . C{z: Rez>d}.
Furthermore, if Qo = orthogonal projection onto &g ® 1, then

He—tfo(l— QO)H < Cet0-9),
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Perturbation theory for Zk

If |k| is sufficiently small, the spectrum of Ly consists of:

@ A non-degenerate eigenvalue E(k) contained in
Ho ={z : |z| < c|kl|}.
@ The rest of the spectrum is contained in the half plane
Hy = {z:Rez > § — c|k|} such that HyN Hy = 0.
Furthermore, E(k) is C? in a neighborhood of 0,

E(0)=0, VE(0)=0,
and
8;:0;E(0) = 2Re <a,-f<050 ®1, Zlajkoao ® 1> ,
0

is positive definite.

v
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Putting it together

—i%kX _ 7Tt/L\ 7D
ge NG E(pt(X,X)) - <50®1ve k/\fpo;k/\ﬁ(8 1>L2(Zd><Q)
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Putting it together

—i%kX _ 7Tt/L\ 7D
YRG0 = (@ Lo T G r 01)

— e—TtE(k/\/F) <50 ®1, Q(k)ﬁok/ﬁ X 1>L2(Zd><Q) + O(e_CTt)
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Putting it together

—i%kX _ 7Tt/L\ 7D
YRG0 = (@ Lo T G r 01)

— e—TtE(k/\/F) <50 ®1, Q(k)ﬁok/ﬁ X 1>L2(Zd><Q) + O(e_CTt)

19.9. L. R
— o tZ0 300EOKK (5091 oo @ 1) 120y + 0(1).
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Putting it together

—i%kX _ 7Tt/L\ 7D
YRG0 = (@ Lo T G r 01)

_ o TtE(K/VT) <6o ® 1, Q(k)bok/ 7 © 1>

— e—tE,-,,- 30i0;E(0)kik; <

O(e—CTt)

(50 X ]-7 ﬁO:O 029 1>L2(Zd><Q) + O(]‘)

[2(Z9%xQ)

10,0,E(0) = Diffusion matrix

2
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Comments

@ Diffusion in a Markov potential can be seen in an elementary fashion.
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@ If uy is periodic there is a further Bloch decomposition, with diffusion
in each fiber.
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Comments

@ Diffusion in a Markov potential can be seen in an elementary fashion.

@ If uy is periodic there is a further Bloch decomposition, with diffusion
in each fiber.

o If A = disorder strength

D ~ % [Do + AQ(\)]

o Dy is well behaved in the limit T — oo.
o Not so Q! (nor should it be....)
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Comments

Diffusion in a Markov potential can be seen in an elementary fashion.

If uy is periodic there is a further Bloch decomposition, with diffusion
in each fiber.

o If A = disorder strength

D ~ % [Do + AQ(\)]

o Dy is well behaved in the limit T — oo.
o Not so Q! (nor should it be....)

The augmented space setup works also for Anderson model. But no
spectral gap.
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Open problems

@ Convergence of higher time correlations:

E (‘thl(\/;X)‘z Wrtg(\ﬁx)‘2> , etc

@ Almost sure convergence?
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Open problems

@ Convergence of higher time correlations:
2 2
E(‘wﬂl(\ﬁx)‘ "(/JTtQ(ﬁX)‘ ), etc.
@ Almost sure convergence?
e Continuum? (no spectral gap. possibly super diffusion)
o Gapless processes
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Open problems

Convergence of higher time correlations:

E (‘thl(\/;X)‘z Wrtg(\ﬁx)‘z) , etc

Almost sure convergence?
Continuum? (no spectral gap. possibly super diffusion)

Gapless processes

And of course... diffusion for the Anderson model....
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