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The problem

“Obvious” fact

Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we
are very far from having a good mathematical understanding of this
phenomenon.1

1Actually it is well understood in certain limiting regimes. Maybe that is good
enough?
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For example

i∂tψ(x) = −
∑
|y−x |=1

ψ(y) + λvω(x)ψ(x), ψ ∈ `2(Zd),

λ small

vω random

Does

lim
t→∞

1

t

∑
x

|x |2|ψt(x)|2 = D > 0?

Erdös, Salmhofer, Yau: yes if you take λ→ 0 with t and rescale D.
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Why diffusion?

multiple scattering =⇒ build up of random phases

build up of random phases =⇒ loss of coherence

loss of coherence =⇒ “classical” propagation (absence of
interference)

classical random scattering =⇒ diffusion (central limit theorem)

There are mathematical difficulties with every step of this argument.
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Recurrence

One key difficulty is recurrence: the wave packet may return often to
regions visited previously.

Makes loss of coherence imprecise

Makes central limit theorem hard

So let’s get rid of recurrence:
Make the potential time dependent with short correlations.
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Time dependent potentials

Why?

Applications to signal propagation in optical fibers (Mitra & Stark,
Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
More fundamentally reason: to have a rigorous mathematical model of
wave diffusion.

It is more or less clear that one should expect diffusion (and only
diffusion) from time dependent models1.
Can we prove it?

Ovvchinnikov and Erikhman (JETP 40 (1974)):
Gaussian white noise potential =⇒ diffusion.
Pillet (CMP 102 (1985)):
Transience of the wave packet.
A very useful formula for a Markov potential.
Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
Markov potential =⇒ diffusive scaling up to logarithmic corrections.

1with a UV cut-off
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Markov process

A random path ω(t) in some topological space Ω:

Distribution of ω(·+ t) given ω(s), 0 ≤ s ≤ t, depends only on ω(t).

Precise definition with σ-algebras and transition measures.

The increments of the process have no memory — ω(t) and ω(s)
can still be correlated.
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Markov tight binding Schroedinger equation

i∂tψt(x) =
∑
ζ

h(ζ)ψ(x − ζ) + ux(ω(t))ψ(x)

with∑
ζ |ζ|2|h(ζ)| <∞

ω a Markov process.1

ux : Ω→ R bounded measurable functions

Question

What do we need to know about h, ux and ω to prove diffusion?

1with cádlág paths.
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Simple Example

The “flip” model

Suppose Ω = {−1, 1}Zd
, so each element ω is a field of ±1 spins.

Let ux(ω) = ω(x) = spin at x .

Let ω(x) evolve in time, independently of all other spins, so that it
flips at the times 0 < t1(x) < t2(x) < · · · of a Poisson process.
Then

lim
τ→∞

∑
x

e−i 1√
τ
k·xE

(
|ψτ t(x)|2

)
= ‖ψ0‖2 e−t

P
i,j Di,jkikj .
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Diffusion

lim
τ→∞

∑
x

e−i 1√
τ
k·xE

(
|ψτ t(x)|2

)
= ‖ψ‖2

0 e−t
P

i,j Di,jkikj

=⇒ lim
τ→∞

τ
d
2

∑
ζ

w(
√
τ r − ζ)E

(
|ψτ t(ζ)|2

)
→ ‖ψ0‖2 1

(πDt)
d
2

e−
|r|2
Dt .

in the sense of distributions.

Mean square amplitude of the wave packet converges in a scaling
limit to the fundamental solution of a heat equation.

We also show that

lim
t→∞

1

t

∑
x

|x |2E
(
|ψt(x)|2

)
= D.
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Conditions

1 (Stationarity): Invariant probability measure µ on Ω

Bernoulli with p = 1/2 in the flip model.

2 (Translation invariance): ux = u0 ◦ τx with τx : Ω→ Ω measure
preserving maps, τx ◦ τy = τx+y

3 (Markov generator):

St f (ω) = E (f (ω(t))|ω(0) = ω)

defines a strongly continuous contraction semi-group on L2(Ω), so we
have St = e−tB for some maximally dissipative operator B.
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Conditions on the generator

4 (Gap condition): A strict spectral gap for the generator B

Re 〈f ,Bf 〉L2(Ω) ≥
1

T
〈f , f 〉L2(Ω) , if

∫
Ω

f (ω)dµ(ω) = 0.

5 (Sectoriality):

|Im 〈f ,Bf 〉|L2(Ω) ≤ γ Re 〈f ,Bf 〉L2(Ω)

Exponential return to equilibrium

Taken together these imply St f → 1 exponentially fast.
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Result

Theorem (Kang and S. 2009)

Under the above assumptions, if for all x 6= y

inf
x 6=y

∥∥B−1(ux − uy )
∥∥

L2(Ω)
> 0, (?)

and if the hopping is non-trivial,1 then

lim
τ→∞

∑
x

e−i 1√
τ
k·xE

(
|ψτ t(x)|2

)
= e−t

P
i,j Di,jkikj ‖ψ0‖2

with Di ,j a positive definite matrix.

B−1ux and B−1uy independent (as in the flip model) =⇒ (?):∥∥B−1(ux − uy )
∥∥2

= var(B−1ux) + var(B−1uy ) = 2 var(B−1u0).

1P
ζ(k · ζ)2h(ζ) 6= 0 for all k ∈ Rd \ {0}.
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Periodic potentials

Theorem (Hamza, Kang and S. 2009)

In place of (?) suppose that ux is periodic, ux+Lζ = ux ∀ζ ∈ Zd with
some L ≥ 2 and

min
x∈ΛL\{0}

∥∥B−1(ux − u0)
∥∥

L2(Ω)
> 0, (??)

where ΛL = [0, L]d . Then

lim
τ→∞

∑
x

e−i 1√
τ
k·xE

(
|ψτ t(x)|2

)
=

∫
(0,2π]d

e−t
P

i,j Di,j (p)kikj wψ0(p)dp

with Di ,j(p) positive definite for all p and wψ0(p) ≥ 0.

Superposition of diffusions.

Example: translate a periodic potential by a continuous time random
walk.
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Density matrix

ρt(x , y) = ψt(x)ψt(y)∗,

ρt(x , x) = |ψt(x)|2 .
Linear evolution:

∂tρt(x , y) = −i
∑
ζ

h(ζ) [ρt(x − ζ, y)− ρt(x , y + ζ)]

− i (ux(ω(t))− uy (ω(t))) ρt(x , y).
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Feynman-Kac and Augmented space

Pillet 1985

E (ρt(x , y)) =
〈
δx ⊗ δy ⊗ 1, e−tLρ0 ⊗ 1

〉
L2(Zd×Zd×Ω)

.

“Augmented” space: L2(Zd × Zd × Ω) = `2(Zd)⊗ `2(Zd)⊗ L2(Ω).

Generator

LΨ(x , y , ω) = i
∑
ζ

h(ζ) [Ψ(x − ζ, y , ω)−Ψ(x , y + ζ, ω)]︸ ︷︷ ︸
KΨ(x ,y ,ω)

+ i (ux(ω)− uy (ω))Ψ(x , y , ω)︸ ︷︷ ︸
V Ψ(x ,y ,ω)

+BΨ(x , y , ω)
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Translation Symmetry

[Sξ, L] = i[Sξ,K ] + i[Sξ,V ] + [Sξ,B] = 0

SξΨ(x , y , ω) = Ψ(x − ξ, y − ξ, τξω).

Fourier transform

Ψ̂(x , ω, k) =
∑
ζ

e−ik·ζSζΨ(x , 0, ω) =
∑
ζ

e−ik·ζΨ(x − ζ,−ζ, τζω).

Partially diagonalizes L.
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Bloch decomposition

E (ρt(x , y)) =

∫
Td

e−ik·y
〈
δx−y ⊗ 1, e−tbLk ρ̂0;k ⊗ 1

〉
L2(Zd×Ω)

d`(k).

Generator

L̂kφ(x , ω) = i
∑
ζ

h(ζ)
[
φ(x − ζ, ω)− e−ik·ζφ(x − ζ, τζω)

]
︸ ︷︷ ︸bKkφ(x ,ω)

+ i (ux(ω)− u0(ω))φ(x , ω)︸ ︷︷ ︸bVφ(x ,ω)

+Bφ(x , ω).

ρ̂0;k(x) =
∑

ζ e−ik·ζρ0(x − ζ,−ζ).
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Bloch decomposition

E (ρt(x , y)) =

∫
Td

e−ik·y
〈
δx−y ⊗ 1, e−tbLk ρ̂0;k ⊗ 1

〉
L2(Zd×Ω)

d`(k).

Generator

L̂kφ(x , ω) = i
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ζ
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Diffusively rescaled Feynman-Kac

∑
x

e−i 1√
τ
k·xE (ρt(x , x)) =

〈
δ0 ⊗ 1, e−τ t

bLk/
√
τ ρ̂0;k/

√
τ ⊗ 1

〉
L2(Zd×Ω)

.

Diffusion = good control over e−tbLk for k ≈ 0.

Strategy:
1 Understand k = 0.
2 Use perturbation theory.
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Block decomposition for L̂0

Block decomposition

L̂0 =

(
0 iP0V̂

iV̂ P0 P⊥0 L̂0P⊥0

)

over H0 ⊕H⊥0 with

H0 = `2(Zd)⊗ {1}, H⊥0 =

{
φ(x , ω) :

∫
Ω
φ(x , ω)dµ(ω) = 0

}
.

L̂0δ0 ⊗ 1 = 0, because∑
x

E (ρt(x , x)) =
∑
x

ρ0(x , x).
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Spectral gap for L̂0

L̂0 =

(
0 iP0V̂

iV̂ P0 P⊥0 L̂0P⊥0

)
Re P⊥0 L̂0P⊥0 = P⊥0 BP⊥0 ≥ 1

T P⊥0 .

Schur:1 If Re z < 1/T then L̂0 − z is invertible if and only if

Γ(z) = P0V̂
(

P⊥0 L̂0P⊥0 − z
)−1

V̂ P0 − z

is invertible.

Re Γ(z) ≥ σ2 1− T Re z

T

‖u‖2
∞

1 + 4
(

T‖ĥ‖∞ + 2T ‖u‖∞ + 1
)2

(1− Π0),

Π0 = projection onto δ0 ⊗ 1.
1or Feshbach, or Krein ...
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Spectral gap for L̂0

Lemma

There is δ > 0 such that

σ(L̂0) = {0} ∪ Σ+ (1)

where

1 0 is a non-degenerate eigenvalue, and

2 Σ+ ⊂ {z : Re z > δ} .
Furthermore, if Q0 = orthogonal projection onto δ0 ⊗ 1, then∥∥∥e−tbL0(1− Q0)

∥∥∥ ≤ Cεe−t(δ−ε).
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Perturbation theory for L̂k

Lemma

If |k| is sufficiently small, the spectrum of L̂k consists of:

1 A non-degenerate eigenvalue E (k) contained in
H0 = {z : |z | < c |k|}.

2 The rest of the spectrum is contained in the half plane
H1 = {z : Re z > δ − c |k|} such that H0 ∩ H1 = ∅.

Furthermore, E (k) is C 2 in a neighborhood of 0,

E (0) = 0, ∇E (0) = 0,

and

∂i∂jE (0) = 2 Re

〈
∂i K̂0δ0 ⊗ 1,

1

L̂0

∂j K̂0δ0 ⊗ 1

〉
,

is positive definite.
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Putting it together

∑
x

e−i 1√
τ
k·xE (ρt(x , x)) =

〈
δ0 ⊗ 1, e−τ t

bLk/
√
τ ρ̂0;k/

√
τ ⊗ 1

〉
L2(Zd×Ω)

= e−τ tE(k/
√
τ)
〈
δ0 ⊗ 1,Q(k)ρ̂0;k/

√
τ ⊗ 1

〉
L2(Zd×Ω)

+ O(e−cτ t)

= e−t
P

i,j
1
2
∂i∂jE(0)kikj 〈δ0 ⊗ 1, ρ̂0;0 ⊗ 1〉L2(Zd×Ω) + o(1).

1
2∂i∂jE (0) = Diffusion matrix
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Comments

Diffusion in a Markov potential can be seen in an elementary fashion.

If ux is periodic there is a further Bloch decomposition, with diffusion
in each fiber.

If λ = disorder strength

D ∼ 1

λ2
[D0 + λQ(λ)]

D0 is well behaved in the limit T →∞.
Not so Q! (nor should it be....)

The augmented space setup works also for Anderson model. But no
spectral gap.
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Open problems

Convergence of higher time correlations:

E
(∣∣ψτ t1(

√
τx)
∣∣2 ∣∣ψτ t2(

√
τx)
∣∣2) , etc.

Almost sure convergence?

Continuum? (no spectral gap. possibly super diffusion)

Gapless processes

And of course... diffusion for the Anderson model....
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