Diffusion of wave packets in a Markov random potential

Jeffrey Schenker

Michigan State University Joint work with Yang Kang (JSP **134** (2009)) WIP with Eman Hamza & Yang Kang

ETH Zürich 9 June 2009

Outline

- Introduction
- The Markov tight binding Schrödinger equation
- 3 Proof

The problem

"Obvious" fact

Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we are very far from having a good mathematical understanding of this phenomenon.¹

Jeffrey Schenker (MSU) Diffusion of waves 9 June 2009 3 / 29

¹Actually it *is* well understood in certain limiting regimes. Maybe that is good enough?

The problem

"Obvious" fact

Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we are very far from having a good mathematical understanding of this phenomenon.¹

Jeffrey Schenker (MSU) Diffusion of waves 9 June 2009 3 / 29

¹Actually it *is* well understood in certain limiting regimes. Maybe that is good enough?

The problem

"Obvious" fact

Waves in a disordered environment diffuse.

Problem:

Despite experience and the rich physical theory surrounding this fact, we are very far from having a good mathematical understanding of this phenomenon. 1

Jeffrey Schenker (MSU) Diffusion of waves 9 June 2009 3 / 29

¹Actually it *is* well understood in certain limiting regimes. Maybe that is good enough?

For example

$$\mathrm{i}\partial_t \psi(x) \; = \; -\sum_{|y-x|=1} \psi(y) + \lambda v_\omega(x) \psi(x), \quad \psi \in \ell^2(\mathbb{Z}^d),$$

- ullet λ small
- v_{ω} random

Does

$$\lim_{t \to \infty} \frac{1}{t} \sum_{x} |x|^2 |\psi_t(x)|^2 = D > 0?$$

• Erdös, Salmhofer, Yau: yes if you take $\lambda \to 0$ with t and rescale D.

Jeffrey Schenker (MSU)

For example

$$\mathrm{i}\partial_t\psi(x) = -\sum_{|y-x|=1}\psi(y) + \lambda v_\omega(x)\psi(x), \quad \psi \in \ell^2(\mathbb{Z}^d),$$

- ullet λ small
- ullet v_{ω} random

Does

$$\lim_{t \to \infty} \frac{1}{t} \sum_{x} |x|^2 |\psi_t(x)|^2 = D > 0?$$

ullet Erdös, Salmhofer, Yau: yes if you take $\lambda \to 0$ with t and rescale D.

- multiple scattering \implies build up of random phases
- ullet build up of random phases \Longrightarrow loss of coherence
- ullet classical random scattering \Longrightarrow diffusion (central limit theorem)

- multiple scattering \implies build up of random phases
- ullet build up of random phases \Longrightarrow loss of coherence
- classical random scattering diffusion (central limit theorem)

- multiple scattering ⇒ build up of random phases
- build up of random phases ⇒ loss of coherence
- ullet classical random scattering \Longrightarrow diffusion (central limit theorem)

- ullet multiple scattering \Longrightarrow build up of random phases
- build up of random phases ⇒ loss of coherence
- ullet classical random scattering \Longrightarrow diffusion (central limit theorem)

- multiple scattering \implies build up of random phases
- build up of random phases ⇒ loss of coherence
- ullet classical random scattering \Longrightarrow diffusion (central limit theorem)

Recurrence

One key difficulty is *recurrence*: the wave packet may return often to regions visited previously.

- Makes loss of coherence imprecise
- Makes central limit theorem hard

So let's get rid of recurrence:

Make the potential time dependent with short correlations.

Recurrence

One key difficulty is *recurrence*: the wave packet may return often to regions visited previously.

- Makes loss of coherence imprecise
- Makes central limit theorem hard

So let's get rid of recurrence:

Make the potential time dependent with short correlations.

Why?

- Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
- More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 Can we prove it?
 - Ovvchinnikov and Erikhman (JETP 40 (1974)): Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
 Markov potential ⇒ diffusive scaling up to logarithmic corrections

• Why?

- Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
- More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 - Ovvchinnikov and Erikhman (JETP 40 (1974)): Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
 Markov potential ⇒ diffusive scaling up to logarithmic corrections.

- Why?
 - Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
 - More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 Can we prove it?
 - Ovvchinnikov and Erikhman (JETP 40 (1974)): Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
 Markov potential ⇒ diffusive scaling up to logarithmic corrections.

- Why?
 - Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
 - More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 Can we prove it?
 - Ovvchinnikov and Erikhman (JETP 40 (1974)): Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
 Markov potential ⇒ diffusive scaling up to logarithmic corrections.

- Why?
 - Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
 - More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 Can we prove it?
 - Ovvchinnikov and Erikhman (JETP 40 (1974)): Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)):
 Markov potential ⇒ diffusive scaling up to logarithmic corrections.

- Why?
 - Applications to signal propagation in optical fibers (Mitra & Stark, Nature 411 (2001); Green, Littlewood, Mitra, Wegener PRE 66 (2002))
 - More fundamentally reason: to have a rigorous mathematical model of wave diffusion.
- It is more or less clear that one should expect diffusion (and only diffusion) from time dependent models¹.
 Can we prove it?
 - Ovvchinnikov and Erikhman (JETP 40 (1974)):
 Gaussian white noise potential ⇒ diffusion.
 - Pillet (CMP 102 (1985)):
 Transience of the wave packet.
 A very useful formula for a Markov potential.
 - Tcheremchantsev (CMP 187 (1997), CMP 196 (1998)): Markov potential \implies diffusive scaling up to logarithmic corrections.

Outline

- Introduction
- 2 The Markov tight binding Schrödinger equation
- Proof

Markov process

A random path $\omega(t)$ in some topological space Ω :

- Distribution of $\omega(\cdot + t)$ given $\omega(s)$, $0 \le s \le t$, depends *only* on $\omega(t)$.
- ullet Precise definition with σ -algebras and transition measures.
- The increments of the process have no memory $\omega(t)$ and $\omega(s)$ can still be correlated.

Markov process

A random path $\omega(t)$ in some topological space Ω :

- Distribution of $\omega(\cdot + t)$ given $\omega(s)$, $0 \le s \le t$, depends *only* on $\omega(t)$.
- Precise definition with σ -algebras and transition measures.
- The increments of the process have no memory $\omega(t)$ and $\omega(s)$ can still be correlated.

Markov tight binding Schroedinger equation

$$\mathrm{i}\partial_t\psi_t(x) = \sum_{\zeta}h(\zeta)\psi(x-\zeta) + u_x(\omega(t))\psi(x)$$

with

- $\sum_{\zeta} |\zeta|^2 |h(\zeta)| < \infty$
- ullet ω a Markov process. 1
- $u_x : \Omega \to \mathbb{R}$ bounded measurable functions

Question

What do we need to know about h, u_x and ω to prove diffusion?

¹with cádlág paths.

Markov tight binding Schroedinger equation

$$\mathrm{i}\partial_t\psi_t(x) = \sum_{\zeta}h(\zeta)\psi(x-\zeta) + u_x(\omega(t))\psi(x)$$

with

- $\sum_{\zeta} |\zeta|^2 |h(\zeta)| < \infty$
- \bullet ω a Markov process. 1
- $u_x : \Omega \to \mathbb{R}$ bounded measurable functions

Question

What do we need to know about h, u_x and ω to prove diffusion?

¹with cádlág paths.

- Suppose $\Omega = \{-1,1\}^{\mathbb{Z}^d}$, so each element ω is a field of ± 1 spins.
- Let $u_x(\omega) = \omega(x) = \text{spin at } x$.
- Let $\omega(x)$ evolve in time, independently of all other spins, so that it flips at the times $0 < t_1(x) < t_2(x) < \cdots$ of a Poisson process. Then

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-\mathrm{i} \frac{1}{\sqrt{\tau}} \mathbf{k} \cdot \mathbf{x}} \mathbb{E} \left(\left| \psi_{\tau t}(\mathbf{x}) \right|^2 \right) = \| \psi_0 \|^2 e^{-t \sum_{i,j} D_{i,j} \mathbf{k}_i \mathbf{k}_j}.$$

- Suppose $\Omega = \{-1,1\}^{\mathbb{Z}^d}$, so each element ω is a field of ± 1 spins.
- Let $u_x(\omega) = \omega(x) = \text{spin at } x$.
- Let $\omega(x)$ evolve in time, independently of all other spins, so that it flips at the times $0 < t_1(x) < t_2(x) < \cdots$ of a Poisson process. Then

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}} \mathbf{k} \cdot \mathbf{x}} \mathbb{E}\left(\left| \psi_{\tau t}(\mathbf{x}) \right|^2 \right) = \|\psi_0\|^2 e^{-t\sum_{i,j} D_{i,j} \mathbf{k}_i \mathbf{k}_j}.$$

- Suppose $\Omega = \{-1,1\}^{\mathbb{Z}^d}$, so each element ω is a field of ± 1 spins.
- Let $u_x(\omega) = \omega(x) = \text{spin at } x$.
- Let $\omega(x)$ evolve in time, independently of all other spins, so that it flips at the times $0 < t_1(x) < t_2(x) < \cdots$ of a Poisson process.

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k} \cdot \mathbf{x}} \mathbb{E}\left(\left|\psi_{\tau t}(\mathbf{x})\right|^{2}\right) = \|\psi_{0}\|^{2} e^{-t\sum_{i,j} D_{i,j} \mathbf{k}_{i} \mathbf{k}_{j}}.$$

- Suppose $\Omega = \{-1,1\}^{\mathbb{Z}^d}$, so each element ω is a field of ± 1 spins.
- Let $u_x(\omega) = \omega(x) = \text{spin at } x$.
- Let $\omega(x)$ evolve in time, independently of all other spins, so that it flips at the times $0 < t_1(x) < t_2(x) < \cdots$ of a Poisson process. Then

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k} \cdot \mathbf{x}} \mathbb{E}\left(\left|\psi_{\tau t}(\mathbf{x})\right|^{2}\right) = \|\psi_{0}\|^{2} e^{-t\sum_{i,j} D_{i,j}\mathbf{k}_{i}\mathbf{k}_{j}}.$$

Diffusion

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k} \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{\tau t}(\mathbf{x})|^{2}\right) = \|\psi\|_{0}^{2} e^{-t\sum_{i,j} D_{i,j}\mathbf{k}_{i}\mathbf{k}_{j}}$$

$$\implies \lim_{\tau \to \infty} \tau^{\frac{d}{2}} \sum_{\zeta} w(\sqrt{\tau}\mathbf{r} - \zeta) \mathbb{E}\left(|\psi_{\tau t}(\zeta)|^{2}\right) \to \|\psi_{0}\|^{2} \frac{1}{(\pi D t)^{\frac{d}{2}}} e^{-\frac{|\mathbf{r}|^{2}}{D t}}.$$

in the sense of distributions.

- Mean square amplitude of the wave packet converges in a scaling limit to the fundamental solution of a heat equation.
- We also show that

$$\lim_{t\to\infty}\frac{1}{t}\sum_{x}|x|^2\mathbb{E}\left(|\psi_t(x)|^2\right) = D.$$

Diffusion

$$\begin{split} &\lim_{\tau \to \infty} \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i} \frac{1}{\sqrt{\tau}} \mathbf{k} \cdot \mathbf{x}} \mathbb{E} \left(|\psi_{\tau t}(\mathbf{x})|^2 \right) \; = \; \|\psi\|_0^2 \, \mathrm{e}^{-t \sum_{i,j} D_{i,j} \mathbf{k}_i \mathbf{k}_j} \\ &\implies \lim_{\tau \to \infty} \tau^{\frac{d}{2}} \sum_{\zeta} w(\sqrt{\tau} \mathbf{r} - \zeta) \mathbb{E} \left(|\psi_{\tau t}(\zeta)|^2 \right) \; \to \; \|\psi_0\|^2 \frac{1}{(\pi D t)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|\mathbf{r}|^2}{D t}}. \end{split}$$

in the sense of distributions.

- Mean square amplitude of the wave packet converges in a scaling limit to the fundamental solution of a heat equation.
- We also show that

$$\lim_{t\to\infty}\frac{1}{t}\sum_{x}|x|^2\mathbb{E}\left(|\psi_t(x)|^2\right) = D.$$

Diffusion

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k} \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{\tau t}(\mathbf{x})|^{2}\right) = \|\psi\|_{0}^{2} e^{-t\sum_{i,j} D_{i,j}\mathbf{k}_{i}\mathbf{k}_{j}}$$

$$\implies \lim_{\tau \to \infty} \tau^{\frac{d}{2}} \sum_{\zeta} w(\sqrt{\tau}\mathbf{r} - \zeta) \mathbb{E}\left(|\psi_{\tau t}(\zeta)|^{2}\right) \to \|\psi_{0}\|^{2} \frac{1}{(\pi D t)^{\frac{d}{2}}} e^{-\frac{|\mathbf{r}|^{2}}{D t}}.$$

in the sense of distributions.

- Mean square amplitude of the wave packet converges in a scaling limit to the fundamental solution of a heat equation.
- We also show that

$$\lim_{t\to\infty}\frac{1}{t}\sum_{x}|x|^2\mathbb{E}\left(|\psi_t(x)|^2\right) = D.$$

Conditions

- (Stationarity): Invariant probability measure μ on Ω • Bernoulli with p=1/2 in the flip model.
- ② (Translation invariance): $u_X = u_0 \circ \tau_X$ with $\tau_X : \Omega \to \Omega$ measure preserving maps, $\tau_X \circ \tau_Y = \tau_{X+Y}$
- (Markov generator):

$$S_t f(\omega) = \mathbb{E}(f(\omega(t))|\omega(0) = \omega)$$

defines a strongly continuous contraction semi-group on $L^2(\Omega)$, so we have $S_t = e^{-tB}$ for some maximally dissipative operator B.

Conditions

- (Stationarity): Invariant probability measure μ on Ω • Bernoulli with p=1/2 in the flip model.
- ② (*Translation invariance*): $u_x = u_0 \circ \tau_x$ with $\tau_x : \Omega \to \Omega$ measure preserving maps, $\tau_x \circ \tau_y = \tau_{x+y}$
- (Markov generator):

$$S_t f(\omega) = \mathbb{E}(f(\omega(t))|\omega(0) = \omega)$$

defines a strongly continuous contraction semi-group on $L^2(\Omega)$, so we have $S_t = e^{-tB}$ for some maximally dissipative operator B.

Conditions

- (Stationarity): Invariant probability measure μ on Ω
 - Bernoulli with p = 1/2 in the flip model.
- ② (Translation invariance): $u_x = u_0 \circ \tau_x$ with $\tau_x : \Omega \to \Omega$ measure preserving maps, $\tau_x \circ \tau_y = \tau_{x+y}$
- (Markov generator):

$$S_t f(\omega) = \mathbb{E}(f(\omega(t))|\omega(0) = \omega)$$

defines a strongly continuous contraction semi-group on $L^2(\Omega)$, so we have $S_t = e^{-tB}$ for some maximally dissipative operator B.

Conditions on the generator

(Gap condition): A strict spectral gap for the generator B

$$\operatorname{\mathsf{Re}} \langle f, Bf
angle_{L^2(\Omega)} \geq rac{1}{T} \, \langle f, f
angle_{L^2(\Omega)} \ , \quad ext{ if } \int_{\Omega} f(\omega) \mathrm{d} \mu(\omega) = 0.$$

(Sectoriality):

$$|\operatorname{Im} \langle f, Bf \rangle|_{L^2(\Omega)} \,\, \leq \,\, \gamma \operatorname{Re} \, \langle f, Bf \rangle_{L^2(\Omega)}$$

Exponential return to equilibrium

Taken together these imply $S_t f \rightarrow 1$ exponentially fast.

Conditions on the generator

(Gap condition): A strict spectral gap for the generator B

$$\operatorname{\mathsf{Re}} \langle f, Bf
angle_{L^2(\Omega)} \geq rac{1}{T} \, \langle f, f
angle_{L^2(\Omega)} \ , \quad ext{ if } \int_{\Omega} f(\omega) \mathrm{d} \mu(\omega) = 0.$$

(Sectoriality):

$$|\operatorname{Im}\langle f, Bf \rangle|_{L^2(\Omega)} \le \gamma \operatorname{Re}\langle f, Bf \rangle_{L^2(\Omega)}$$

Exponential return to equilibrium

Taken together these imply $S_t f \rightarrow 1$ exponentially fast.

Result

Theorem (Kang and S. 2009)

Under the above assumptions, if for all $x \neq y$

$$\inf_{x \neq y} \|B^{-1}(u_x - u_y)\|_{L^2(\Omega)} > 0, \tag{*}$$

15 / 29

and if the hopping is non-trivial, then

$$\lim_{\tau \to \infty} \sum_{x} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k} \cdot x} \mathbb{E}\left(\left|\psi_{\tau t}(x)\right|^{2}\right) = e^{-t\sum_{i,j} D_{i,j}\mathbf{k}_{i}\mathbf{k}_{j}} \left\|\psi_{0}\right\|^{2}$$

with $D_{i,j}$ a positive definite matrix.

• $B^{-1}u_x$ and $B^{-1}u_y$ independent (as in the flip model) \implies (\star) :

$$||B^{-1}(u_x - u_y)||^2 = \operatorname{var}(B^{-1}u_x) + \operatorname{var}(B^{-1}u_y) = 2\operatorname{var}(B^{-1}u_0).$$

 ${}^1\sum\nolimits_{\zeta} (\mathbf{k}\cdot\zeta)^2 h(\zeta) \neq 0 \text{ for all } \mathbf{k} \in \mathbb{R}^d \setminus \{0\}.$

Jeffrey Schenker (MSU) Diffusion of waves 9 June 2009

Periodic potentials

Theorem (Hamza, Kang and S. 2009)

In place of (\star) suppose that u_x is periodic, $u_{x+L\zeta}=u_x \quad \forall \zeta \in \mathbb{Z}^d$ with some $L \geq 2$ and

$$\min_{x \in \Lambda_L \setminus \{0\}} \left\| B^{-1} (u_x - u_0) \right\|_{L^2(\Omega)} > 0, \tag{**}$$

where $\Lambda_L = [0, L]^d$. Then

$$\lim_{\tau \to \infty} \sum_{\mathbf{x}} e^{-\mathrm{i} \frac{1}{\sqrt{\tau}} \mathbf{k} \cdot \mathbf{x}} \mathbb{E} \left(|\psi_{\tau t}(\mathbf{x})|^2 \right) = \int_{(0,2\pi]^d} e^{-t \sum_{i,j} D_{i,j}(\mathbf{p}) \mathbf{k}_i \mathbf{k}_j} w_{\psi_0}(\mathbf{p}) d\mathbf{p}$$

with $D_{i,j}(\mathbf{p})$ positive definite for all \mathbf{p} and $w_{\psi_0}(\mathbf{p}) \geq 0$.

- Superposition of diffusions.
- Example: translate a periodic potential by a continuous time random walk.

Outline

- Introduction
- The Markov tight binding Schrödinger equation
- 3 Proof

Density matrix

$$\rho_t(x,y) = \psi_t(x)\psi_t(y)^*,$$

- $\rho_t(x,x) = |\psi_t(x)|^2$.
- Linear evolution:

$$\partial_t \rho_t(x,y) = -i \sum_{\zeta} h(\zeta) \left[\rho_t(x-\zeta,y) - \rho_t(x,y+\zeta) \right] - i \left(u_x(\omega(t)) - u_y(\omega(t)) \right) \rho_t(x,y).$$

Feynman-Kac and Augmented space

Pillet 1985

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \left\langle \delta_x \otimes \delta_y \otimes 1, \mathrm{e}^{-tL} \rho_0 \otimes 1 \right\rangle_{L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega)}.$$

- "Augmented" space: $L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega) = \ell^2(\mathbb{Z}^d) \otimes \ell^2(\mathbb{Z}^d) \otimes L^2(\Omega)$.
- Generator

$$L\Psi(x,y,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\Psi(x-\zeta,y,\omega) - \Psi(x,y+\zeta,\omega) \right]}_{K\Psi(x,y,\omega)} + i \underbrace{\left(u_x(\omega) - u_y(\omega) \right) \Psi(x,y,\omega)}_{V\Psi(x,y,\omega)} + B\Psi(x,y,\omega)$$

Feynman-Kac and Augmented space

Pillet 1985

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \left\langle \delta_x \otimes \delta_y \otimes 1, \mathrm{e}^{-tL} \rho_0 \otimes 1 \right\rangle_{L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega)}.$$

- "Augmented" space: $L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega) = \ell^2(\mathbb{Z}^d) \otimes \ell^2(\mathbb{Z}^d) \otimes L^2(\Omega)$.
- Generator

$$L\Psi(x,y,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\Psi(x-\zeta,y,\omega) - \Psi(x,y+\zeta,\omega) \right]}_{K\Psi(x,y,\omega)} + i \underbrace{\left(u_x(\omega) - u_y(\omega) \right) \Psi(x,y,\omega)}_{V\Psi(x,y,\omega)} + B\Psi(x,y,\omega)$$

Feynman-Kac and Augmented space

Pillet 1985

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \left\langle \delta_x \otimes \delta_y \otimes 1, \mathrm{e}^{-t\underline{L}} \rho_0 \otimes 1 \right\rangle_{L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega)}.$$

- "Augmented" space: $L^2(\mathbb{Z}^d \times \mathbb{Z}^d \times \Omega) = \ell^2(\mathbb{Z}^d) \otimes \ell^2(\mathbb{Z}^d) \otimes L^2(\Omega)$.
- Generator

$$L\Psi(x,y,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\Psi(x-\zeta,y,\omega) - \Psi(x,y+\zeta,\omega) \right]}_{K\Psi(x,y,\omega)} + i \underbrace{\left(u_x(\omega) - u_y(\omega) \right) \Psi(x,y,\omega)}_{V\Psi(x,y,\omega)} + B\Psi(x,y,\omega)$$

Translation Symmetry

$$[S_{\xi}, L] = i[S_{\xi}, K] + i[S_{\xi}, V] + [S_{\xi}, B] = 0$$

 $S_{\xi}\Psi(x, y, \omega) = \Psi(x - \xi, y - \xi, \tau_{\xi}\omega).$

Fourier transform

$$\widehat{\Psi}(x,\omega,\mathbf{k}) \; = \; \sum_{\zeta} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\zeta} S_{\zeta} \Psi(x,0,\omega) \; = \; \sum_{\zeta} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\zeta} \Psi(x-\zeta,-\zeta,\tau_{\zeta}\omega).$$

Partially diagonalizes L.

Translation Symmetry

$$[S_{\xi}, L] = i[S_{\xi}, K] + i[S_{\xi}, V] + [S_{\xi}, B] = 0$$

 $S_{\xi}\Psi(x, y, \omega) = \Psi(x - \xi, y - \xi, \tau_{\xi}\omega).$

Fourier transform

$$\widehat{\Psi}(x,\omega,\mathbf{k}) \; = \; \sum_{\zeta} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\zeta} \mathcal{S}_{\zeta} \Psi(x,0,\omega) \; = \; \sum_{\zeta} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\zeta} \Psi(x-\zeta,-\zeta,\tau_{\zeta}\omega).$$

Partially diagonalizes L.

Bloch decomposition

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \int_{\mathbb{T}^d} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot y} \left\langle \delta_{x-y}\otimes 1, \mathrm{e}^{-t\widehat{L}_{\mathbf{k}}} \widehat{\rho}_{0;\mathbf{k}}\otimes 1 \right\rangle_{L^2(\mathbb{Z}^d\times\Omega)} \mathrm{d}\ell(\mathbf{k}).$$

Generator

$$\widehat{L}_{\mathbf{k}}\phi(x,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\phi(x-\zeta,\omega) - e^{-i\mathbf{k}\cdot\zeta} \phi(x-\zeta,\tau_{\zeta}\omega) \right]}_{\widehat{K}_{\mathbf{k}}\phi(x,\omega)} + i \underbrace{\left(u_{\mathbf{x}}(\omega) - u_{\mathbf{0}}(\omega) \right) \phi(x,\omega)}_{\widehat{V}\phi(x,\omega)} + B\phi(x,\omega).$$

•
$$\widehat{\rho}_{0;\mathbf{k}}(x) = \sum_{\zeta} e^{-i\mathbf{k}\cdot\zeta} \rho_0(x-\zeta,-\zeta).$$

Bloch decomposition

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \int_{\mathbb{T}^d} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot y} \left\langle \delta_{x-y}\otimes 1, \mathrm{e}^{-t\widehat{\boldsymbol{L}}_{\mathbf{k}}} \widehat{\rho}_{0;\mathbf{k}}\otimes 1 \right\rangle_{L^2(\mathbb{Z}^d\times\Omega)} \mathrm{d}\ell(\mathbf{k}).$$

Generator

$$\widehat{L}_{\mathbf{k}}\phi(x,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\phi(x-\zeta,\omega) - e^{-i\mathbf{k}\cdot\zeta} \phi(x-\zeta,\tau_{\zeta}\omega) \right]}_{\widehat{K}_{\mathbf{k}}\phi(x,\omega)} + i \underbrace{\left(u_{x}(\omega) - u_{0}(\omega) \right) \phi(x,\omega)}_{\widehat{V}\phi(x,\omega)} + B\phi(x,\omega).$$

•
$$\widehat{\rho}_{0;\mathbf{k}}(x) = \sum_{\zeta} e^{-i\mathbf{k}\cdot\zeta} \rho_0(x-\zeta,-\zeta).$$

Bloch decomposition

$$\mathbb{E}\left(\rho_t(x,y)\right) \;=\; \int_{\mathbb{T}^d} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot y} \left\langle \delta_{x-y}\otimes 1, \mathrm{e}^{-t\widehat{L}_{\mathbf{k}}} \widehat{\rho}_{0;\mathbf{k}} \otimes 1 \right\rangle_{L^2(\mathbb{Z}^d \times \Omega)} \mathrm{d}\ell(\mathbf{k}).$$

Generator

$$\widehat{L}_{\mathbf{k}}\phi(x,\omega) = i \underbrace{\sum_{\zeta} h(\zeta) \left[\phi(x-\zeta,\omega) - e^{-i\mathbf{k}\cdot\zeta} \phi(x-\zeta,\tau_{\zeta}\omega) \right]}_{\widehat{K}_{\mathbf{k}}\phi(x,\omega)} + i \underbrace{\left(u_{x}(\omega) - u_{0}(\omega) \right) \phi(x,\omega)}_{\widehat{V}\phi(x,\omega)} + B\phi(x,\omega).$$

•
$$\widehat{\rho}_{0;\mathbf{k}}(x) = \sum_{\zeta} e^{-i\mathbf{k}\cdot\zeta} \rho_0(x-\zeta,-\zeta).$$

Jeffrey Schenker (MSU)

Diffusively rescaled Feynman-Kac

$$\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_t(\mathbf{x},\mathbf{x})\right) \; = \; \left\langle \delta_0 \otimes \mathbf{1}, \mathrm{e}^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes \mathbf{1} \right\rangle_{L^2(\mathbb{Z}^d \times \Omega)}.$$

- Diffusion = good control over $e^{-t\hat{L}_{\mathbf{k}}}$ for $\mathbf{k} \approx 0$.
- Strategy:
 - ① Understand $\mathbf{k} = 0$.
 - ② Use perturbation theory.

Diffusively rescaled Feynman-Kac

$$\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_t(\mathbf{x},\mathbf{x})\right) \; = \; \left\langle \delta_0 \otimes \mathbf{1}, \mathrm{e}^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes \mathbf{1} \right\rangle_{L^2(\mathbb{Z}^d \times \Omega)}.$$

- Diffusion = good control over $e^{-t\widehat{L}_{\mathbf{k}}}$ for $\mathbf{k} \approx \mathbf{0}$.
- Strategy:
 - ① Understand $\mathbf{k} = 0$.
 - ② Use perturbation theory.

Diffusively rescaled Feynman-Kac

$$\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_t(\mathbf{x},\mathbf{x})\right) \; = \; \left\langle \delta_0 \otimes \mathbf{1}, \mathrm{e}^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes \mathbf{1} \right\rangle_{L^2(\mathbb{Z}^d \times \Omega)}.$$

- Diffusion = good control over $e^{-t\widehat{L}_{\mathbf{k}}}$ for $\mathbf{k} \approx 0$.
- Strategy:
 - **1** Understand $\mathbf{k} = 0$.
 - 2 Use perturbation theory.

Block decomposition for \widehat{L}_0

Block decomposition

$$\widehat{L}_0 \ = \ \begin{pmatrix} 0 & \mathrm{i} P_0 \widehat{V} \\ \mathrm{i} \widehat{V} P_0 & P_0^\perp \widehat{L}_0 P_0^\perp \end{pmatrix}$$

over $\mathcal{H}_0 \oplus \mathcal{H}_0^{\perp}$ with

$$\mathcal{H}_0 = \ell^2(\mathbb{Z}^d) \otimes \{1\}, \quad \mathcal{H}_0^\perp = \left\{\phi(x,\omega) : \int_\Omega \phi(x,\omega) \mathrm{d}\mu(\omega) = 0\right\}.$$

• $\widehat{L}_0 \delta_0 \otimes 1 = 0$, because

$$\sum_{x} \mathbb{E}(\rho_{t}(x,x)) = \sum_{x} \rho_{0}(x,x).$$

Block decomposition for \widehat{L}_0

Block decomposition

$$\widehat{L}_0 = \begin{pmatrix} 0 & iP_0\widehat{V} \\ i\widehat{V}P_0 & P_0^{\perp}\widehat{L}_0P_0^{\perp} \end{pmatrix}$$

over $\mathcal{H}_0 \oplus \mathcal{H}_0^\perp$ with

$$\mathcal{H}_0 = \ell^2(\mathbb{Z}^d) \otimes \{1\}, \quad \mathcal{H}_0^\perp = \left\{\phi(x,\omega) : \int_\Omega \phi(x,\omega) \mathrm{d}\mu(\omega) = 0\right\}.$$

• $\widehat{L}_0 \delta_0 \otimes 1 = 0$, because

$$\sum_{x} \mathbb{E} \left(\rho_t(x, x) \right) = \sum_{x} \rho_0(x, x).$$

Spectral gap for \widehat{L}_0

$$\widehat{L}_0 = \begin{pmatrix} 0 & iP_0\widehat{V} \\ i\widehat{V}P_0 & P_0^{\perp}\widehat{L}_0P_0^{\perp} \end{pmatrix}$$

- Re $P_0^{\perp} \widehat{L}_0 P_0^{\perp} = P_0^{\perp} B P_0^{\perp} \ge \frac{1}{T} P_0^{\perp}$.
- Schur:¹ If Re z < 1/T then $L_0 z$ is invertible if and only if

$$\Gamma(z) = P_0 \widehat{V} \left(P_0^{\perp} \widehat{L}_0 P_0^{\perp} - z \right)^{-1} \widehat{V} P_0 - z$$

is invertible.

$$\operatorname{Re}\Gamma(z) \ge \sigma^2 \frac{1 - T \operatorname{Re} z}{T} \frac{\|u\|_{\infty}^2}{1 + 4\left(T\|\widehat{h}\|_{\infty} + 2T \|u\|_{\infty} + 1\right)^2} (1 - \Pi_0),$$

• Π_0 = projection onto $\delta_0 \otimes 1$.

Spectral gap for \widehat{L}_0

$$\widehat{L}_0 = \begin{pmatrix} 0 & iP_0\widehat{V} \\ i\widehat{V}P_0 & P_0^{\perp}\widehat{L}_0P_0^{\perp} \end{pmatrix}$$

- Re $P_0^{\perp} \widehat{L}_0 P_0^{\perp} = P_0^{\perp} B P_0^{\perp} \ge \frac{1}{T} P_0^{\perp}$.
- Schur:¹ If Re z < 1/T then $\widehat{L}_0 z$ is invertible if and only if

$$\Gamma(z) = P_0 \widehat{V} \left(P_0^{\perp} \widehat{L}_0 P_0^{\perp} - z \right)^{-1} \widehat{V} P_0 - z$$

is invertible.

$$\operatorname{\mathsf{Re}} \Gamma(z) \geq \sigma^2 \frac{1 - T \operatorname{\mathsf{Re}} z}{T} \frac{\|u\|_{\infty}^2}{1 + 4 \left(T \|\widehat{h}\|_{\infty} + 2T \|u\|_{\infty} + 1\right)^2} (1 - \Pi_0),$$

• Π_0 = projection onto $\delta_0 \otimes 1$.

Spectral gap for \widehat{L}_0

Lemma

There is $\delta > 0$ such that

$$\sigma(\widehat{L}_{\mathbf{0}}) = \{0\} \cup \Sigma_{+} \tag{1}$$

where

1 0 is a non-degenerate eigenvalue, and

Furthermore, if $Q_0 =$ orthogonal projection onto $\delta_0 \otimes 1$, then

$$\left\| e^{-t\widehat{L}_0} (1 - Q_0) \right\| \le C_{\epsilon} e^{-t(\delta - \epsilon)}.$$

Perturbation theory for $\widehat{L}_{\mathbf{k}}$

Lemma

If $|\mathbf{k}|$ is sufficiently small, the spectrum of $\widehat{L}_{\mathbf{k}}$ consists of:

- A non-degenerate eigenvalue E(k) contained in $H_0 = \{z : |z| < c|\mathbf{k}|\}.$
- ② The rest of the spectrum is contained in the half plane $H_1 = \{z : \text{Re } z > \delta c |\mathbf{k}| \}$ such that $H_0 \cap H_1 = \emptyset$.

Furthermore, $E(\mathbf{k})$ is C^2 in a neighborhood of 0,

$$E(0)=0, \quad \nabla E(0)=0,$$

and

$$\partial_i \partial_j E(0) = 2 \operatorname{Re} \left\langle \partial_i \widehat{K}_0 \delta_0 \otimes 1, \frac{1}{\widehat{L}_0} \partial_j \widehat{K}_0 \delta_0 \otimes 1 \right\rangle,$$

is positive definite.

$$\begin{split} \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_{\mathbf{t}}(\mathbf{x},\mathbf{x})\right) &= \left\langle \delta_{0} \otimes 1, \mathrm{e}^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} \\ &= \mathrm{e}^{-\tau t E(\mathbf{k}/\sqrt{\tau})} \left\langle \delta_{0} \otimes 1, Q(\mathbf{k}) \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + O(\mathrm{e}^{-c\tau t}) \\ &= \mathrm{e}^{-t \sum_{i,j} \frac{1}{2} \partial_{i} \partial_{j} E(0) \mathbf{k}_{i} \mathbf{k}_{j}} \left\langle \delta_{0} \otimes 1, \widehat{\rho}_{0;0} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + o(1). \end{split}$$

$$\frac{1}{2}\partial_i\partial_i E(0) = \text{Diffusion matrix}$$

$$\begin{split} \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_{t}(\mathbf{x},\mathbf{x})\right) &= \left\langle \delta_{0}\otimes 1, \mathrm{e}^{-\tau t\widehat{L}_{\mathbf{k}/\sqrt{\tau}}}\widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}}\otimes 1\right\rangle_{L^{2}(\mathbb{Z}^{d}\times\Omega)} \\ &= \mathrm{e}^{-\tau t E(\mathbf{k}/\sqrt{\tau})} \left\langle \delta_{0}\otimes 1, Q(\mathbf{k})\widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}}\otimes 1\right\rangle_{L^{2}(\mathbb{Z}^{d}\times\Omega)} + O(\mathrm{e}^{-c\tau t}) \\ &= \mathrm{e}^{-t\sum_{i,j}\frac{1}{2}\partial_{i}\partial_{j}E(0)\mathbf{k}_{i}\mathbf{k}_{j}} \left\langle \delta_{0}\otimes 1, \widehat{\rho}_{0;0}\otimes 1\right\rangle_{L^{2}(\mathbb{Z}^{d}\times\Omega)} + o(1). \end{split}$$

$$rac{1}{2}\partial_i\partial_j E(0)=$$
 Diffusion matrix

$$\sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_{t}(\mathbf{x},\mathbf{x})\right) = \left\langle \delta_{0} \otimes 1, e^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} \\
= e^{-\tau t E(\mathbf{k}/\sqrt{\tau})} \left\langle \delta_{0} \otimes 1, Q(\mathbf{k}) \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + O(e^{-c\tau t}) \\
= e^{-t \sum_{i,j} \frac{1}{2} \partial_{i} \partial_{j} E(0) \mathbf{k}_{i} \mathbf{k}_{j}} \left\langle \delta_{0} \otimes 1, \widehat{\rho}_{0;0} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + o(1).$$

$$\frac{1}{2}\partial_i\partial_i E(0) = \text{Diffusion matrix}$$

Jeffrey Schenker (MSU)

$$\sum_{\mathbf{x}} e^{-i\frac{1}{\sqrt{\tau}}\mathbf{k}\cdot\mathbf{x}} \mathbb{E}\left(\rho_{t}(\mathbf{x},\mathbf{x})\right) = \left\langle \delta_{0} \otimes 1, e^{-\tau t \widehat{L}_{\mathbf{k}/\sqrt{\tau}}} \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} \\
= e^{-\tau t E(\mathbf{k}/\sqrt{\tau})} \left\langle \delta_{0} \otimes 1, Q(\mathbf{k}) \widehat{\rho}_{0;\mathbf{k}/\sqrt{\tau}} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + O(e^{-c\tau t}) \\
= e^{-t \sum_{i,j} \frac{1}{2} \partial_{i} \partial_{j} E(0) \mathbf{k}_{i} \mathbf{k}_{j}} \left\langle \delta_{0} \otimes 1, \widehat{\rho}_{0;0} \otimes 1 \right\rangle_{L^{2}(\mathbb{Z}^{d} \times \Omega)} + o(1).$$

$$\frac{1}{2}\partial_i\partial_i E(0) = \text{Diffusion matrix}$$

- Diffusion in a Markov potential can be seen in an elementary fashion.
- If u_x is periodic there is a further Bloch decomposition, with diffusion in each fiber.
- If $\lambda = \text{disorder strength}$

$$D \sim \frac{1}{\lambda^2} \left[D_0 + \lambda Q(\lambda) \right]$$

- D_0 is well behaved in the limit $T \to \infty$.
- Not so Q! (nor should it be....)
- The augmented space setup works also for Anderson model. But no spectral gap.

- Diffusion in a Markov potential can be seen in an elementary fashion.
- If u_x is periodic there is a further Bloch decomposition, with diffusion in each fiber.
- If $\lambda = \text{disorder strength}$

$$D \sim \frac{1}{\lambda^2} \left[D_0 + \lambda Q(\lambda) \right]$$

- D_0 is well behaved in the limit $T \to \infty$.
- Not so Q! (nor should it be....)
- The augmented space setup works also for Anderson model. But no spectral gap.

- Diffusion in a Markov potential can be seen in an elementary fashion.
- If u_x is periodic there is a further Bloch decomposition, with diffusion in each fiber.
- If $\lambda = \text{disorder strength}$

$$D \sim \frac{1}{\lambda^2} [D_0 + \lambda Q(\lambda)]$$

- D_0 is well behaved in the limit $T \to \infty$.
- Not so Q! (nor should it be....)
- The augmented space setup works also for Anderson model. But no spectral gap.

- Diffusion in a Markov potential can be seen in an elementary fashion.
- If u_x is periodic there is a further Bloch decomposition, with diffusion in each fiber.
- If $\lambda = \text{disorder strength}$

$$D \sim \frac{1}{\lambda^2} [D_0 + \lambda Q(\lambda)]$$

- D_0 is well behaved in the limit $T \to \infty$.
- Not so Q! (nor should it be....)
- The augmented space setup works also for Anderson model. But no spectral gap.

Open problems

• Convergence of higher time correlations:

$$\mathbb{E}\left(\left|\psi_{\tau t_1}(\sqrt{\tau}x)\right|^2\left|\psi_{\tau t_2}(\sqrt{\tau}x)\right|^2\right),\quad \text{etc.}$$

- Almost sure convergence?
- Continuum? (no spectral gap. possibly super diffusion)
- Gapless processes
- And of course... diffusion for the Anderson model....

Open problems

• Convergence of higher time correlations:

$$\mathbb{E}\left(\left|\psi_{\tau t_1}(\sqrt{\tau}x)\right|^2\left|\psi_{\tau t_2}(\sqrt{\tau}x)\right|^2\right),\quad \text{etc.}$$

- Almost sure convergence?
- Continuum? (no spectral gap. possibly super diffusion)
- Gapless processes
- And of course... diffusion for the Anderson model....

Open problems

• Convergence of higher time correlations:

$$\mathbb{E}\left(\left|\psi_{\tau t_1}(\sqrt{\tau}x)\right|^2\left|\psi_{\tau t_2}(\sqrt{\tau}x)\right|^2\right),\quad \text{etc.}$$

- Almost sure convergence?
- Continuum? (no spectral gap. possibly super diffusion)
- Gapless processes
- And of course... diffusion for the Anderson model....