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PURPOSE

• Study the dynamics of solitons for the gen-

eralized nonlinear Schödinger equation (NLSE)

in random (and time-dependent) external po-

tentials.

• Investigate whether the analogy between soli-

tons and “point particles + ǫ” over certain

spatial and temporal scales holds for random

potentials.

• Search for regimes with interesting limiting

dynamics for the center of mass of the soliton.
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Why might it be interesting?

NLSE describes very many nonlinear phenomema,

ranging from BEC (GP-equation), nonlinear

optics, to biology. Solitons may propagate

in the field of random scatterers or inhomo-

geneities.

Dynamics and stability of NLSE solitons in ran-

dom potentials poorly understood.
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METHODS

• Advances in nonlinear PDEs in the past two

decades: well-posedness of NLSE, existence

and stability of solitons, modulation theory .

[Kato, Ginibre, Velo, Berestycki, Lions, Strauss,

Grillakis, Shatah, Weinstein]

• Progress in understanding effective motion

of solitons in deterministic external potentials.

[Jerrard, Bronski, Fröhlich, Yau, Tsai, Gustafson,

Sigal, Jonsson, Zworski, Holmer, A-S ]

• Understanding limiting dynamics of classical

particles in random potentials. [Papanicolaou,

Kesten, Lebowitz, Dürr, Goldstein, Ryzhik, Ko-

morowski]
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SOME HISTORY

Bronski and Jerrard, 2000: semi-classical limit
of solitary wave dynamics.

Fröhlich, Tsai and Yau, 2000 - 2002: effective
dynamics for Hartree equation.

Fröhlich, Gustafson, Jonsson and Sigal, 2004 -
2006: effective dynamics for generalized NLSE.

Holmer and Zworski, 2007-2008: effective dy-
namics in the presence of a delta potential and
in the presence of slowly varying potential for
the cubic NLSE in 1-dimension.

A-S, 2007-2008: effective dynamics in the pres-
ence of a time-dependent potential, and in the
presence of rough nonlinear perturbations.

A-S, Fröhlich and Sigal, 2008: collision of fast
solitons in an external potential.

A-S and Sulem, 2009: resonance tunneling of
fast solitons through large potential barriers.
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SOME RELATED RESULTS

Garnier, 1998: (formal) analysis of soliton trans-

mission in random media (in 1-dimension).

Di Mensa, 2006: numerical study of diffusion

of soliton in the presence of noise.

Erdos, Yau, Salmhofer, 2007: quantum diffu-

sion for the linear Schrödinger equation with

random potential in the weak-coupling/semi-

classical limit.

Bourgain and Wang, 2008: localization for

NLSE with random potential.
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NLSE with random potential describes the mean-

field dynamics of many-body bosons in a ran-

dom potential. [A-S]
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THE MODEL

NLSE

i∂tψ(x, t) = (−∆+λVh(x, t;ω))ψ(x, t)−f(ψ(x, t))
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Probability triple (Ω,F ,P)

External potential

Vh(x, t;ω) ≡ V (hx, t;ω), h ∈ (0,1]

ω ∈ Ω, x ∈ R
N , t ∈ R

Vh ∈ L∞(W1,∞(R, C2(RN) ∩W2,∞(RN)))
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Nonlinearity

f : H1(RN ;C) → H−1(RN ;C)

with f(0) = 0, and f(ψ) = f(ψ).

Typical nonlinearities

f(ψ) = |ψ|sψ, 0 < s <
4

N
.
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Solitary wave solution

ησ(x, t) := ei(
1
2v·(x−a)+γ)ηµ(x − a)

σ := (a,v, γ, µ)

(−∆ + µ)ηµ − f(ηµ) = 0

11



Initial condition

Close to a soliton

‖ψ(t = 0) − ησ0‖H1 ≤ C0h
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EFFECTIVE DYNAMICS

Theorem 1

For all h ∈ (0, h0) and for any fixed ǫ ∈ (0,1),

we have that

sup
t∈[0,Cǫ| logh|/λh)

E[‖ψ − ησ(t)‖H1] ≤ Ch1− ǫ
2,

uniformly in λ ∈ (h1−ǫ,1], and

∂ta = v +O(h2−ǫ)
∂tv = −2λ∇Vh(a, t;ω) +O(h2−ǫ)

∂tγ = µ+
1

4
‖v‖2 − Vh(a, t;ω) +O(h2−ǫ)

∂tµ = O(h2−ǫ),

with

‖a(0)−a0‖, ‖v(0)−v0‖, |γ(0)−γ0|, |µ(0)−µ0| = O(h).



WEAK-COUPLING/SPACE-ADIABATIC LIMIT

Suppose that V = V is time-independent. We

make the scaling

a := ha

v := v

t := ht.

It follows that

∂ta = v +O(h2−ǫ)
∂tv = −2λ∇V (a;ω) +O(h1−ǫ)

with initial condition

‖a(0) − ha0‖ = O(h2), ‖v(0) − v0‖ = O(h).
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Auxiliary stochastic process

(ã(t), ṽ(t))t≥0 given by

∂tã = ṽ

∂tṽ = −2λ∇V (ã;ω)

with

ã(0) = 0, ṽ(0) = v0.

Corresponding Hamiltonian

Hcl(ã, ṽ) =
‖ṽ‖2
2

+ 2λV (ã).
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Further assumptions on the potential

V is strongly mixing in the uniform sense.

Let

ϕ(ρ) =sup{|P(A) − P(B|A)|, r > 0,

A ∈ Cir, B ∈ Cer+ρ}, ρ > 0.

We assume

sup
ρ≥0

ρpϕ(ρ) < ∞.
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Two-point spatial correlation function

R(ã) = 4E(V (ã)V (0)).

We assume that

R ∈ C∞(RN)

such that

R̂ does not vanish identically on

any Hp = {ṽ ∈ R
N , ṽ · p = 0},p ∈ R

N .
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Diffusive regime

Macroscopic time over which diffusion is ob-

served is

1/λ2 < Cǫ| logh|/λ.

As λ→ 0 and h→ 0, we need that | logh|λ→ ∞
as h→ 0.

Sufficient condition:

λ =
1

| logh|1−α,

α ∈ (0,1).

17



Momentum diffusion

(v(t))t≥0 generated by L

Lu(v) =
N∑

i,j=1

∂vi(Dij(v)∂vju(v)).

Diffusion matrix

Dij(k) := − 1

2‖k‖

∫ ∞

−∞
∂xi∂xjR(s

k

‖k‖)ds, k ∈ R
N .
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MOMENTUM DIFFUSION IN N ≥ 2

Theorem 2

Suppose ‖v0‖ 6= 0, and that there exists α̃ > 0

such that the coupling constant λ→ 0 as h→ 0

with | logh|λ3/2+α̃ → ∞. Then

(λ2a(t/λ2),v(t/λ2))t∈(0,T) → (
∫ t
0 v(s)ds, v(t))t∈(0,T)

in law (weakly) as h, λ→ 0.
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Still, momentum diffusion implies spatial diffu-

sion over longer time scales !

(At least for N ≥ 3.)
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SPATIAL DIFFUSION IN N ≥ 3

Liouville equation

∂tφ
λ = ∂ta|a=x,v=k · ∇xφ

λ + ∂tv|a=x,v=k · ∇kφ
λ

with

φλ(x,0,k) = φ0(λ
2+βx,k), β > 0.

Spatial diffusion

∂tu =
∑

i,j

dij(‖k‖)∂xi∂xju,

with

u(x,0,k) =
1

ΓN−1

∫

SN−1
φ0(x, ‖k‖l)dΣ(l).
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Here,

dij(‖k‖) =
1

ΓN−1

∫

SN−1
‖k‖liχj(‖k‖l)dΣ(l),

where χj are (mean-zero) solutions of

N∑

i,j=1

∂ki(Dij(k)∂kjχj) = −‖k‖k̂j.
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Theorem 3

Suppose ‖v0‖ 6= 0, and that there exists α̃ > 0

such that λ → 0 as h → 0 with | logh|λ1+α̃ →
∞. Then there exists β̃ ∈ (0, α̃/2) such that,

for all 0 < β < β̃,

lim
λ,h→0

sup
(t,x,k)∈[0,T ]×K

|E[φλ(x/λ2+β, t/λ2+2β,k)]

− u(x, t,k)| = 0.
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Previous results hold under more general as-

sumptions.
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GENERAL ASSUMPTIONS

(A1)Energy. ∃ a C3-functional F : H1 → R,

such that F ′(.) = f(.),

sup
‖u‖H1

≤M
‖F ′′(u)‖B(H1,H−1)

< ∞,

sup
‖u‖H1

≤M
‖F ′′′(u)‖H1→B(H1,H−1)

< ∞.
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(A2)Symmetry. F(T .) = F(.), where T is

(i) T tra : u(x) → u(x− a), a ∈ RN ,

(ii) T rR : u(x) → u(R−1x), R ∈ SO(N),

(iii) T gγ : u(x) → eiγu(x), γ ∈ [0,2π),

(iv) T bv : u(x) → e
i
2v·xu(x), v ∈ RN .
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(A3)Solitary wave solutions. ∃I ⊂ R such that

∀µ ∈ I, the nonlinear eigenvalue problem

(−∆ + µ)ηµ − f(ηµ) = 0

has a positive, spherically symmetric solution

ηµ ∈ L2 ∩ C2, such that

‖|x|3ηµ‖L2 + ‖|x|2|∇ηµ|‖L2 + ‖|x|2∂µηµ‖L2 <∞,

for all µ ∈ I. (ηµ(x)αe
−√

µ|x| for large x)

(A4)Orbital Stability.

∂µ

∫
dxη2µ > 0

for µ ∈ I.
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(A5) Hessian.

Lµ := −∆ + µ− f ′(ηµ)

The null space is

N (Lµ) = span{(0, ηµ), (∂xnηµ,0), n = 1, · · · , N}.
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TOOL BOX

Hamiltonian structure

Real inner product (Riemannian metric) on H1

〈u, v〉 := Re

∫
dx uv.

Symplectic 2-form

Ξ(u, v) := Im

∫
dx uv = 〈u, iv〉.

Hamiltonian functional

Hλ(ψ) :=
1

2

∫
dx |∇ψ|2 +

λ

2

∫
Vh|ψ|2 − F(ψ).
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The Hamiltonian is nonautonomous.

∂tHλ(ψ) =
λ

2

∫
dx (∂tVh)|ψ|2, P − a.s.
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∂µm(µ) > 0

⇒ ηµ is a local minimizer of Hλ=0(ψ) restricted

to the balls

Bm := {ψ ∈ H1 : N(ψ) = m}.

Critical points of the action functional

Eµ(ψ) :=
1

2

∫
dx (|∇ψ|2 + µ|ψ|2) − F(ψ).
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Soliton manifold

Ms := {ησ := Tavγηµ,

σ = (a,v, γ, µ) ∈ R
N × R

N × [0,2π) × I}.

Combined transformation Tavγ

ψavγ := Tavγψ = ei(
1
2v·(x−a)+γ)ψ(x − a).
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The tangent space to Ms at ηµ ∈ Ms

TηµMs = span{Et, Eg, Eb, Es},
where

Et := ∇aT
tr
a ηµ|a=0 = −∇ηµ

Eg := ∂γT
g
γ ηµ|γ=0 = iηµ

Eb := 2∇vT
b
vηµ|v=0 = ixηµ

Es := ∂µηµ.
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Note that

ej := −∂xj, j = 1, · · · , N,
ej+N := ixj, j = 1, · · · , N,
e2N+1 := i,

e2N+2 := ∂µ,

when acting on ησ ∈ Ms, generate the basis

vectors {eαησ}2N+2
α=1 of TησMs.
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Symplectic structure of the soliton manifold

Ξσ|TησMs := {〈eαησ, ieβησ〉}1≤α,β≤2N+2

=





0 −m(µ)1N×N 0 −1
2vm′(µ)

m(µ)1N×N 0 0 am′(µ)
0 0 0 m′(µ)

1
2vTm′(µ) −aTm′(µ) −m′(µ) 0




.
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Group structure

{eα}α=1,··· ,2N+1 are generators of the Lie al-

gebra g corresponding to the Heisenberg group

H2N+1.

(a,v, γ) · (a′,v′, γ′) = (a′′,v′′, γ′′),

a′′ = a + a′,

v′′ = v + v′,

and

γ′′ = γ′ + γ +
1

2
v · a′.
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Zero modes

iLµ : TηµMs → TηµMs

(iLµ)2X = 0, ∀X ∈ TηµMs.
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Skew-Orthogonal decomposition

Let

Uδ := {ψ ∈ H1, inf
σ∈Σ0

‖ψ − ησ‖H1 ≤ δ}.

For δ ≪ 1 and ∀ψ ∈ Uδ,

∃!σ(ψ) ∈ C1(Uδ,Σ)

Ξ(ψ − ησ(ψ), X) = 0,

for all X ∈ Tησ(ψ)
Ms.
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PROOF OF EFFECTIVE DYNAMICS

Step 1: Reparametrized equations of motion

Using skew-orthogonal (or Lyapunov-Schmidt

decomposition) ⇒

ψ(t) = ησ(t) + w(t) P − a.s.

Dynamics on the soliton manifold = Hamilto-

nian flow generated by the NLSE restricted to

the soliton manifold ⇒ reparametrized equa-

tions of motion for σ(t).
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Proposition

The parameter σ = (a,v, γ, µ) satisfy

∂taj = vj +O(C|c|,w,h)
∂tvj = −2∂xjλVh(a, t;ω) +O(C|c|,w,h)

∂tγ = µ+
1

4
‖v‖2 − λVh(a, t;ω) +O(C|c|,w,h)

∂tµ = O(C|c|,w,h),

where

C|c|,w,h := sup
ω∈Ω

{|c|‖w‖H1 + λh2 + ‖w‖2
H1}

and

|c| := sup{|∂taj − vj|, |∂tvj + 2∂xjVh|,

|∂tγ − µ− 1

4
‖v‖ + λVh|, |∂tµ|}.
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Step 2:Control of the fluctuation

Use an approximate Lyapunov functional and

the coercivity property of the Hessian to con-

trol the H1-norm of the fluctuation w.
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Lyapunov functional

Cµ(u, v) := Eµ(u) − Eµ(v), u, v ∈ H1(RN).

Upper bound

sup
ω∈Ω

|∂tCµ(u, ηµ)|

≤ C sup
ω∈Ω

(
λh2‖w‖H1 + (|c| + λh+ ‖w‖2

H1)‖w‖2H1

)
.
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Lower bound

sup
ω∈Ω

|Cµ(u, ηµ)| ≥ sup
ω∈Ω

ρ

2
‖w‖H1 − C sup

ω∈Ω

‖w‖3
H1.

Control of the fluctuation together with the

reparametrized equations of motion give The-

orem 1.
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PROOF OF THEOREM 2

Explicit control of

effective dynamics of center of mass

“minus”

dynamics of classical particle

(using Gronwall Lemma ).
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Comparison with auxiliary dynamics

∂tã = ṽ

∂tṽ = −2λ∇V (ã;ω)

with

ã(0) = 0, ṽ(0) = v0.
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Lemma

(λ2a(t/λ2),v(t/λ2))t∈[0,T ]

converges P-a.s. (strongly) to the stochastic

process

(λ2ã(t/λ2), ṽ(t/λ2))t∈[0,T ],

as λ, h→ 0.
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Together with Theorem 1 and the results on

momentum diffusion for classical particles, we

have Theorem 2.
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PROOF OF THEOREM 3

Explicit control of

effective dynamics of center of mass

“minus”

dynamics of classical particle

(using method of characteristics to solve the

associated H-J equations).
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Auxiliary spatial diffusion

∂tφ̃
λ =∂tã|ã=x,ṽ=k · ∇xφ̃

λ + ∂tṽ|ã=x,ṽ=k · ∇kφ̃
λ

= k · ∇xφ̃
λ − 2λ∇xV · ∇kφ̃

λ.
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Lemma

φλ and φ̃λ ∈ C1(R;C1(R2N)∩W1,∞(R2N)) P−a.s..
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Lemma

lim
λ,h→0

sup
(t,x,k)∈[0,T ]×K

[φ̃λ(x/λ2+β, t/λ2+2β,k)

− φλ(x/λ2+β, t/λ2+2β,k)] = 0

P − a.s..
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Together with Theorem 1 and results on spa-

tial diffusion for classical particles, we have

Theorem 3.
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