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PURPOSE

e Study the dynamics of solitons for the gen-
eralized nonlinear Schodinger equation (NLSE)
in random (and time-dependent) external po-
tentials.

e Investigate whether the analogy between soli-
tons and “point particles + €’ over certain
spatial and temporal scales holds for random
potentials.

e Search for regimes with interesting limiting
dynamics for the center of mass of the soliton.



Why might it be interesting?

NLSE describes very many nonlinear phenomema,
ranging from BEC (GP-equation), nonlinear
optics, to biology. Solitons may propagate
in the field of random scatterers or inhomo-
geneities.

Dynamics and stability of NLSE solitons in ran-
dom potentials poorly understood.



METHODS

e Advances in nonlinear PDEs in the past two
decades: well-posedness of NLSE, existence
and stability of solitons, modulation theory .
[Kato, Ginibre, Velo, Berestycki, Lions, Strauss,
Grillakis, Shatah, Weinstein]

e Progress in understanding effective motion
of solitons in deterministic external potentials.
[Jerrard, Bronski, Frohlich, Yau, Tsai, Gustafson,
Sigal, Jonsson, Zworski, Holmer, A-S |

e Understanding limiting dynamics of classical
particles in random potentials. [Papanicolaou,
Kesten, Lebowitz, Durr, Goldstein, Ryzhik, Ko-
morowskKi]



SOME HISTORY

Bronski and Jerrard, 2000: semi-classical limit
of solitary wave dynamics.

Frohlich, Tsai and Yau, 2000 - 2002: effective
dynamics for Hartree equation.

Frohlich, Gustafson, Jonsson and Sigal, 2004 -
2006: effective dynamics for generalized NLSE.

Holmer and Zworski, 2007-2008: effective dy-
namics in the presence of a delta potential and
in the presence of slowly varying potential for
the cubic NLSE in 1-dimension.

A-S, 2007-2008: effective dynamics in the pres-
ence of a time-dependent potential, and in the
presence of rough nonlinear perturbations.

A-S, Frohlich and Sigal, 2008: collision of fast
solitons in an external potential.

A-S and Sulem, 2009: resonance tunneling of
fast solitons through large potential barriers.
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SOME RELATED RESULTS

Garnier, 1998: (formal) analysis of soliton trans-
mission in random media (in 1-dimension).

Di Mensa, 2006: numerical study of diffusion
of soliton in the presence of noise.

Erdos, Yau, Salmhofer, 2007:. quantum diffu-
sion for the linear Schrodinger equation with
random potential in the weak-coupling/semi-
classical limit.

Bourgain and Wang, 2008: localization for
NLSE with random potential.



NLSE with random potential describes the mean-
field dynamics of many-body bosons in a ran-
dom potential. [A-S]



THE MODEL

NLSE

Opp(x,1) = (mAFAVL(X, 8 w)) (%, 6)— f((x, 1))



Probability triple (2, F,P)

External potential

Vi (x,t,w) = V(hx,t;w), h € (0,1]

weQ, xeRY, teR

Vi, € L°(WLH(R, C2(RN) n W2°(RM)))



Nonlinearity

frHY(RYN:C) - H (RN ©)

with f(0) =0, and f(¢) = f(¥).
Typical nonlinearities

F) =[5, 0<s< %
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Solitary wave solution

i(Gv-Gea) ), (x  a)

ne(x,t) :=e

o= (a,v,vy, 1)

(=A+ wnu— fp) =0
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Initial condition

Close to a soliton

14t = 0) — nopll 1 < Coh
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EFFECTIVE DYNAMICS

Theorem 1

For all h € (0,hg) and for any fixed ¢ € (0, 1),
we have that

_SUD EHW T no‘(t)”[—]l] S Chl_j)
tc[0,Ce|l0g h|/AR)

uniformly in A € (k1€ 1], and
oa = v + O(h%7)
v = —2A\VV,(a,t;w) + O(h*™°)
Oy = p+ %IIVII2 — Vi(a, t;w) + O(h*™°)
O = O(h?™°),
with

|a(0)—aol], [|[v(0O)—=voll, [v(0)—0l, [#(0) —uo| = O(h).



WEAK-COUPLING/SPACE-ADIABATIC LIMIT

Suppose that V =V is time-independent. We
make the scaling

Q|

ha
Vs
t.

g

It follows that

&a=v—+ O(h*°)
OV = —2AVV (a;w) + O(h'™°)

with initial condition

|a(0) — hag|| = O(h?), ||¥(0) — vo| = O(h).
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Auxiliary stochastic process

(a(?), i‘f(%))izo given by

88 =
8 = —2AVV (& w)

with
a(0) =0, v(0) =wvy.
Corresponding Hamiltonian

R T(x
Hcl(aav)— > + 2V (a).
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Further assumptions on the potential

V is strongly mixing in the uniform sense.

Let

w(p) =sup{|P(A) —P(BJA)|, r >0,
A€, Bec;?+p},p>o.

We assume

sup pPp(p) < oo.
>0

15



Two-point spatial correlation function
R(a) = 4E(V(a)V(0)).
We assume that
R € C®(RM)
such that

R does not vanish identically on
anpr:{i"fERN, G-sz},pERN.
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Diffusive regime

Macroscopic time over which diffusion is ob-
served is

1/X% < Ce|log h|/.

As A\ — 0 and h — 0, we need that |log h|\ — o
as h — 0.

Sufficient condition:
1
| log h|1—e’

a € (0,1).
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Momentum diffusion

(v(t))7>o 9enerated by L

N
Lu(v) = > 9y (D (v)dyu(v)).

1,7=1
Diffusion matrix

D, (k) = ——/ OO R(5—)ds, k€ RY.
Y 2|kl UK
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MOMENTUM DIFFUSION IN N > 2

T heorem 2

Suppose ||vg|| # 0, and that there exists & > 0
such that the coupling constant A - 0ash — O
with |log h|A3/21& _, 50, Then

(N2a(/22), V(E/A))ze 0. — S (8)ds, v(E))ie 0 1y

in law (weakly) as h, A — 0.
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Still, momentum diffusion implies spatial diffu-
sion over longer time scales |

(At least for N > 3.)
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SPATIAL DIFFUSION IN N > 3

Liouville equation

O™ = O8lamy v=k - Vx¢" + O¥]amy =k - V&’
with

¢ (x,0,k) = ¢po(A\?TPx,k), 3> 0.

Spatial diffusion

4J
with
1
u(x,0.K) = == [ doCx, KDz (D),
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Here,

1
d;; (||k]|) =

N—1
where x; are (mean-zero) solutions of

[ Il (kD= ).

N
> Ok, (Dij (k). x5) = — ||k ||%;.
1,7=1
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T heorem 3

Suppose ||vg|| # 0, and that there exists a > 0
such that A — 0 as h — 0 with |log h|A1 T —
co. Then there exists 3 € (0,&/2) such that,
for all 0 < 8 < 3,
lim sup B[ (x/A2T8,¢/02128 k)]
Ah—0 (txk)€[0,T]x K
—u(x,t, k)| = 0.
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Previous results hold under more general as-
sumptions.
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GENERAL ASSUMPTIONS

(A1)Energy. 3 a C3-functional F : H;y — R,
such that F'(.) = f(.),

sup  |F" ()l m_q) < o0,
luallzr, <M (H1.H-1)

sup ||F”/(u)||H1—>B(H1,H_1) < 0.
fullzr, <M
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(A2)Symmetry. F(T.) = F(.), where T is
(i) 71" : u(x) — u(z —a),a € RV,

(i) 74 s u(z) — w(R™1z), R € SO(N),

(i) 77 : u(z) — eVu(z),v € [0, 27),

(iv) T2 : u(x) — e%v'xu(a:),v c RV,
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(A3)Solitary wave solutions. 31 C R such that
VYu € I, the nonlinear eigenvalue problem

(—A+ wnu— fp) =0

has a positive, spherically symmetric solution
nu € L2 N C?, such that

3 2 2
N Pnull g2 + 12 [Vl 2 + [ 0unpull 12 < oo,
for all p e 1. (nu(a:)oze_\/mx' for large x)

(A4)Orbital Stability.

Ou [ dn? >0

for peI.
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(A5) Hessian.

Ly =D+ pu— f(nu)

The null space is

N(E,U) — Spa’n{(oa 77#)7 (aa:nﬁua O)an — 17 e 7N}
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TOOL BOX

Hamiltonian structure

Real inner product (Riemannian metric) on H1

(u,v) 1= Re/dx uv.

Symplectic 2-form

=(u,v) 1= Im/dx u¥ = (u, iv).

Hamiltonian functional

1 A
H\®) = = [ dx [Vyl? + 2 [ Vilvl? = F().
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The Hamiltonian is nonautonomous.

A
OHN(W) =3 [ dx OV, P-as.
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Oum(p) >0

= nu IS a local minimizer of Hy—qg(v) restricted
to the balls

By = {v € H: N() = m}.

Critical points of the action functional

£u) = [ dx (V0P + ulv ) — F ().
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Soliton manifold

Ms = {no = Tavynpu,
o= (a,v,v,p) € RY xRN x [0,27) x I}.

Combined transformation Tavy

Yavy 1= Tayyth) = ei(%v.(x—a)+’7)¢(x —a).
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The tangent space to M, at n, € M

7;7 M = Span{Et7 Ega Eba E3}7

i

where

by = VaTgrnﬂazO = =V
Eg = a’yTgnMH:O = 1My

By := 2VyTonuly—0 = ixny
Es 1= Ounpu.
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Note that

€4 L= _a$j7 ]: 17 7N7
ej—I—N :7’33]7 .]: 17 7N7
€e2N41 ‘= 1,

eoN 42 = Oy,

when acting on n, € Mg, generate the basis
vectors {eang}iﬁ"l"z of Tp, M.
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Symplectic structure of the soliton manifold

=ol7;, Ms = {(€ano, iegno) t1<a,p<2N+2

0 —m(u) Ny N 0 —Lvm/ (1))
_ | m(w)Inxn 0 0 am/ ()
0 0 0 m' ()

\ 3vIm/ () —aTm/(p)  —m/(w) o
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Group structure

{eata=1..2N41 are generators of the Lie al-

gebra g corresponding to the Heisenberg group
H2N+1

(aa Vv, 7) ’ (ala Vl) 'Y/) — (a,la V”7 ’7”)7
a’ =a -+ a’,
vi=v -+ V’,
and

1
/y,,:/y,_l_’y—l_EV'a/-
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Zero modes

’I:[',u . %MMS — %MMS

(GLu)°X =0, VX € Tp,Ms.
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Skew-Orthogonal decomposition

Let

Us:={¢ € H, Jnf v = ol < 83
For 6 < 1 and Vi € Usy,
o () € CH(Us, £)
= — Ny(yp), X) =0,
for all X € 1Ip_ . M.
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PROOF OF EFFECTIVE DYNAMICS

Step 1: Reparametrized equations of motion

Using skew-orthogonal (or Lyapunov-Schmidt
decomposition) =

w(t) — na(t) —|— w(t) P —a.s.

Dynamics on the soliton manifold = Hamilto-
nian flow generated by the NLSE restricted to
the soliton manifold = reparametrized equa-
tions of motion for o(t).
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Proposition

The parameter o = (a, v, ~, u) satisfy

8taj = v; + O(C|c|,w,h>
8751)]- = —28xj)\vh(a, t;w) + O(C|c|,w,h>

1
Oy =+ 2|Vl = AVi(a, @) + O(Cef s p)
c%,u — O(C|c|,w,h)7

where

) 2 2
Clofw,h = sup{c[llw|l g1 + ArT + [[wl[F1}
weS2

and
c| = sup{[Ota; — vl, |Opvj + 20z, V}|,

1
N N PN AN
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Step 2:Control of the fluctuation

Use an approximate Lyapunov functional and
the coercivity property of the Hessian to con-
trol the Hl-norm of the fluctuation w.
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Lyapunov functional

Cu(u,v) = Eu(u) — Eu(v), u,v e HY(RY).

Upper bound

sup [0:Cp(u, nu)|
wel2

< C sup (A2 ||wll g1 + (le| + Ar + wl|Z)lw]Z) -
we
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Lower bound
P Ve 3
sup |Cp(u, nu)| > sup S |lwll g1 — C sup [[w| 51
we wes2 2 wes2

Control of the fluctuation together with the
reparametrized equations of motion give The-
orem 1.
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PROOF OF THEOREM 2

Explicit control of

effective dynamics of center of mass
“minus”

dynamics of classical particle

(using Gronwall Lemma ).
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Comparison with auxiliary dynamics

88 =
8 = —2AVV (& w)

with
a(0) =0, v(0) =wvy.
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Lemma

(\2a(8/22), v (/X)) ic (0.1
converges P-a.s. (strongly) to the stochastic
process

(N2A(E/X), ¥(F/2))ie (0.1
as \,h — O.
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Together with Theorem 1 and the results on
momentum diffusion for classical particles, we
have Theorem 2.
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PROOF OF THEOREM 3

Explicit control of

effective dynamics of center of mass
“minus”

dynamics of classical particle

(using method of characteristics to solve the
associated H-J equations).
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Auxiliary spatial diffusion

015" =05y y=k - Vx&" + O¥]am 5=k - V&
=k - Vxd" — 2AVxV - V.6
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Lemma

o and & e CL(R; CHRZV)NWw > (R2V)) P-as..
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Lemma

lim sup [B(x /X271 /22128 k)
Ah—0 (¢,x,k)€[0,T]x K

— MNx/NTTPE/A2T20 K] =0
P—a.s..
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Together with Theorem 1 and results on spa-
tial diffusion for classical particles, we have
T heorem 3.
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I thank J. Frohlich, I.M. Sigal and C. Sulem
for enjoyable discussions on problems related
to NLSE.
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THANK YOU !
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