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Deterministic diffusion

How to derive diffusion from first principles?

Diffusion is related to global conservation laws

I Hamiltonian systems: Total energy is conseved
I Show: Local energy diffuses

Extended systems: # of degrees of freedom→∞:

I Subsystems indexed by x ∈ Zd

I Dynamics: H = Hsubsystems + Hinteraction

I Hinteraction = 0: energy Ex of subsystem at x conserved
I Hinteraction 6= 0: show Ex (t) diffuses
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Coupled dynamics

Models: Coupled flows and Coupled maps

1. Coupled weakly nonlinear systems:

I u(t , x), x ∈ Zd , ∂2
t u = (∆− r)u − λu3

I Hard! Diffusion at time scale λ−2 might be provable

2. Conservative systems with noise
I Lots of results

Replace noise by chaos:

3. Coupled chaotic systems

I Coupled billiards or Anosov systems
I Coupled maps with a local conservation law
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Coupled chaotic systems

Bunimovich, Liverani, Pellegrinotti, Suhov, Eckmann, Young
...
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Local energy and flux

Total energy is sum of local energies Hx , x ∈ Zd :

H =
∑

x

Hx

No coupling: each Hx is conserved:

Ḣx = 0

Turn on coupling: only H is conserved and

Ḣx = −∇ · Jx

Jx flux of energy at site x .

Show: Hx diffuses and Jx is tied to to Hx by Fourier’s law.
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Diffusion
1. Initial condition

Hx (t = 0)→ E as |x | → ∞.

Show:
Hx (t) = E +O(t−d/2e−

|x|2
Dt ).

2. Hydrodynamic limit: Initial condition

Hx (t = 0) = τ(εx)

Define

τ(t , x) := lim
ε→0

Hx/ε(t/ε2) j(t , x) := lim
ε→0

1
ε
Jx/ε(t/ε2)

Show:

j = −κ(τ)∇τ Fourier law

τ̇ = ∇ · (κ(τ)∇τ) Diffusion
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Coupled map lattice with a conservation law

CML: Discrete space and time dynamics

I Subsystems indexed by x ∈ Zd

I Dynamical variables Ex , θx

I Ex ∈ R "Energy" of subsystem at site x

Subsystem dynamics

I Energy of each cell is conserved: Ex → Ex

I θx chaotic variables θx → f (θx ), f chaotic (hyperbolic)
I E.g. θ ∈ S1, f (θ) = 2θ

Perturb this dynamics so that total energy
∑

x Ex is
conserved.
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Coupling

Coupling: nearby cells interact, exchange energy

E ′x = Ex + Fx (E , θ)

θ′x = f (θx ) + gx (E , θ)

where E = (Eu)u∈Zd , θ = (θu)u∈Zd . Demand:
I Fx ,gx depend on θu,Eu for u near x only
I

∑
x Fx (E , θ) = 0 for all E , θ. This is guaranteed by

taking
F (E , θ) = ∇ · J(E , θ)

∇ discrete gradient.

Then total energy
∑

x Ex conserved.
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Diffusion

Let, at t = 0, Ex → T as |x | → ∞.
Show Ex (t) diffuses to T almost surely in θ(0)

Ex (t)− T ∼ t−d/2e−x2/κt

i.e.
Ld (ELx (L2t)− T )→ e−x2/κt as L→∞

Hydrodynamic scaling limit:

I Let Ex (0) = τ(εx)

I Show: limε→0 E(t/ε2, x/ε) = τ(t , x) satisfies

τ̇ = ∇ · (κ(τ)∇τ)

almost surely in θ(0).
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Fast dynamics

Dynamics of the chaotic variables
I Let θx ∈ S1, x ∈ Zd

I Let gx depend only on θ:

θx (t + 1) = 2θx (t) + gx (θ(t))

I g small, real analytic, local perturbation:

| ∂
∂θy

gx ] ≤ εe−|x−y |

Then θ-dynamics is space time chaotic.
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Random environment

Space time mixing dynamics

E(Fx (θ(t))Gy (θ(0)))− E(Fx (θ(t))EGy (θ(0)) ≤ Ce−c(t+|x−y |)

I E be expectation in m(dθ(0))

I m Lebesgue measure on (S1)Zd

I F ,G smooth, local functions of θ

Sampling θ(0) with m makes θx (t) random variables.

θx (t) acts as random environment for the slow variables E .

Environment is weakly correlated in space and time.
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Slow dynamics

Dynamics of slow variables:

Ex (t + 1)− Ex (t) = ∇ · Jx (E(t), θ(t))

with θx (t) random, weakly correlated in space and time

Slow dynamics is a random nonlinear drift

To prove Ex (t) diffuses a.s. in θ(0) amounts to prove
quenched diffusion for Ex (t).

Assume:
I Jx (E , θ) real analytic in E , θ
I Local, translation and rotation symmetric
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Slow dynamics: annealed

Consider first the annealed case, i.e. take average over θ:

Ex (t + 1)− Ex (t) = ∇ · E[Jx (E(t), ·)] := ∇ · Jx (E(t)).

Then
Jx (E) = 0, E constant

Expand around E constant:

Jx (E) =
∑

y

κ(E)xy∇Ey

by analyticity, isotropy and locality.

Annealed dynamics is a discrete nonlinear diffusion

E(t + 1)− E(t) = ∇ · κ(E(t))∇E(t)
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Slow dynamics: quenched

Let
βx (E(t), t) = Jx (E(t), θ(t))− E[Jx (E(t), ·)]

be the fluctuating part. Then slow dynamics becomes

E(t + 1)− E(t) = ∇ · κ(E(t))∇E(t) +∇ · β(E(t), t)

i.e. nonlinear diffusion with random drift:

Eβ(E , t) = 0

Physically expect κ(E(t)) positive and hope for β to be a
small perturbation.
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Example: Linear problem

Suppose the slow dynamics is linear in E . Then

Ex (t + 1) =
∑

y

pxy (t)Ey (t)

with ∑
x

pxy (t) = 1.

Suppose also pxy ≥ 0. Then

pxy (t) are transition probabilities of a random walk

Ex (t) is (proportional to) the probability of finding the walker
at x at time t

pxy (t) space and time dependent, random i.e. Random
walk in random environment

Prove quenched CLT for such walks
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Result

Control nonlinear perturbation of RWRE

E(t + 1)− E(t) = ∇ · κ(E(t))∇E(t) +∇ · β(E(t), t)

κxy (E) = κ(x − y) + kxy (E)

with κ strictly positive operator, k , β small, local and analytic
in ‖=E‖∞ < δ.

Result. Let Ex (0)→ 0 as t →∞. Almost surely in θ(0)

LdELx (L2t)→ Ce−x2/κt as L→∞

(in norm ‖(1 + |x |d+1)E‖∞)
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Assumptions

kxy (E) =
∑

A⊂Zd

kxyA(E)

βx (t ,E) =
∑

A,B⊂Zd

βxAB(t ,E)

with kxyA, βxAB satisfying
I Analytic in ‖=E‖∞ < δ

I |κxyA| < εe−d(x ,A)

I βxAB, βx ′A′B′ independent if B ∩ B′ = ∅
I E(βxAB)2 < εe−d(x ,y ,A)
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Scaling

Dynamics: E(t + 1, x) = f (t , x ,E(t))

Scaling map SL: (SLE)(x) = LdE(Lx)

Rescaled energies. Let L > 1

En(t) = SLnE(L2nt).

These flow with renormalized dynamics

En(t + 1) = fn(t ,En(t)).

with

fn(t) = SLn (f (L2nt + L2n − 1) ◦ · · · ◦ f (L2nt))SL−n
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Scaling limit

Scaling limit for E:

lim
n→∞

LndE(L2n,Lnx) = lim
n→∞

En(x)

where
En(x) = En(1, x).

En flow with the Renormalization group flow

En+1 = SL[fn(L2 − 1) ◦ · · · ◦ fn(1)(En)]

where fn is the scale Ln renormalized dynamics.



Coupled dynamics

Coupled chaos

Local energy

Diffusion

CML

Coupling

Diffusion for maps

Fast dynamics

Random
environment

Slow dynamics

Slow dynamics:
annealed

Slow dynamics,
quenched

Linear problem

Result

Assumptions

Scaling

Scaling limit

RG for maps

Fixed point

Trivial case

Assumptions

Convergence

Convergence

Hamiltonian systems

Renormalization group for for maps

The dynamics changes with scale as

fn+1 = Rfn

with

Rf (t) = SLf (L2(t + 1)− 1) ◦ · · · ◦ f (L2t)SL−1

R is the Renormalization group flow in a space of random
dynamical systems.
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Fixed point

We prove: almost surely in θ(0) the renormalized maps
converge

fn = Rnf → f ∗

where the fixed point is nonrandom and linear:

f ∗(E) = eκ∆E .

Moreover, the renormalized energies converge almost
surely to the fixed point

En → E∗ = Ae−x2/4κ

which is the diffusive scaling limit. In other words:

I Noise is irrelevant
I Nonlinearity is irrelevant
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Trivial case

Consider linear problem

f (E , x) =
∑

y

T (x − y)E(y)

Then fn = TnE with

Tn(·) = LndT ∗L
2n

(Ln·)

i.e.
T̂n(k) = T̂ (L−nk)L2n ∼ eLna·k−ck2

if T̂ (k) = 1 + a · k − ck2 + o(k2).

Drift term a is a relevant variable, in our case random and
nonlinear.
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Assumptions

Recall our assumptions:

f (t ,E) = (1+κ∆)E +
∑

A⊂Zd

∇·κA(E)∇E +
∑

A,B⊂Zd

∇·βAB(t ,E)

with κxyA, βxAB satisfying
I Analytic in ‖=E‖∞ < δ

I |κxyA| < εe−d(x ,A)

I βxAB, βx ′A′B′ independent if B ∩ B′ = ∅
I E(βxAB)2 < εe−d(x ,y ,A)
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Convergence

Then

fn(t ,E) = (1+κn∆)E +
∑

A⊂Zd

∇·κn
A(E)∇E +

∑
A,B⊂Zd

∇·βn
AB(t ,E)

with κn
xyA, βn

xAB satisfying

I Analytic in ‖=E‖∞ < Lndδ

I |κn
xyA| < εne−d(x ,A)

I βn
xAB, βn

x ′A′B′ independent if B ∩ B′ = ∅
I E(βn

xAB)2 < εne−d(x ,y ,A)

with εn → 0 as n→∞.
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I Analyticity strip expands by Ld each step =⇒
perturbative region expands upon iteration.
Nonlinearities in E irrelevant.

I Noise variance contracts i.e. noise irrelevant
I Need also large deviation estimate: Scale Ln drift

(noise) can be arbitarily large, but with small probability,
going down with n
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Hamiltonian systems

What kind of CML should model Hamiltonian systems?

I Rare configurations of E can slow down mixing of
energies and θ dynamics

I Annealed system is probably not uniformly elliptic and
random drift can create traps with long lifetimes

These issues can be studied with the RG.
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