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Deterministic diffusion

Coupled dynamics
ol How to derive diffusion from first principles?
Diffusion is related to global conservation laws

Random
environment

» Hamiltonian systems: Total energy is conseved

Slow dynamics
annealed

» Show: Local energy diffuses

Extended systems: # of degrees of freedom — oc:
Scahhz limit

» Subsystems indexed by x € Z¢

e » Dynamics: H = Hsubsystems + Hinteraction
» Hinteraction = 0: energy Ex of subsystem at x conserved
> Hinteracﬁon # 0: ShOW Ex(t) diffuses

Convergence
Hamiltonian systems



Coupled dynamics

Coupled dynamics

Lo Models: Coupled flows and Coupled maps
CML

S 1. Coupled weakly nonlinear systems:

S > u(t,x), x € 29, 9fu= (A —rju — A°
S arares » Hard! Diffusion at time scale A\~2 might be provable

Slow dynamics,
quenched

2. Conservative systems with noise

» Lots of results
Scaling limit
Pt Replace noise by chaos:

3. Coupled chaotic systems

Convergence

» Coupled billiards or Anosov systems
» Coupled maps with a local conservation law



Coupled chaotic systems

Bunimovich, Liverani, Pellegrinotti, Suhov, Eckmann, Young




Local energy and flux

Coupled dynamics
T Total energy is sum of local energies Hy, x € Z9:
CML

Coupling Z
Diffusion for maps H = HX
Fast dynamics
Random X
environment

Slow dynamics
Slow dynamics:

No coupling: each Hy is conserved:

Slow dynamics,
quenched

Linear problem .
/F:esun HX =0

ssumptions

Scaling

Scaling limit . .

R or maps Turn on coupling: only H is conserved and
Fixed point

Trivial case .

Assumptions — .

Convergence HX - v JX

Convergence
Hamiltonian systems

Jx flux of energy at site x.

Show: H, diffuses and Jy is tied to to Hy by Fourier’s law.



Diffusion

Coupeadmnies 1. Initial condition

Coupled chaos
Local energy

e Hy(t = 0) — E as |x| — oo.

Coupling

Diffusion for maps

Show:

Random d/ |x\2
environment — — TP
Slow dynamics HX( t) = E + O(t e o )

Slow dynamics
annealed

i 2. Hydrodynamic limit: Initial condition

Linear problem
Result

Assumptions HX(t = 0) = T(EX)
Scaling

Scaling limit

RG for maps Deﬂne

Fixed point

Trivial case

e Tt x) = lim Hy(8/¢) j(t.x) = lim Tdy(t/¢2)

Convergence
Hamiltonian systems

Show:

Jj = —k(7)V7 Fourier law
7=V - (k(r)V7) Diffusion



Coupled map lattice with a conservation law

Coupled dynamics

Coupled chaos

Local ener . . .
O CML: Discrete space and time dynamics
CML

Coupling

Diffusion for maps

» Subsystems indexed by x € Z¢

Random

» Dynamical variables Ey, 0

Slow dynamics
Slow dynamics

» E, € R "Energy" of subsystem at site x

Slow dynamics,
quenched

Linear problem .
Subsystem dynamics
Sj:‘:\:(\ons

Scaling limit

» Energy of each cell is conserved: Ex — Ex

Fixed point

» Oy chaotic variables 6y — f(6y), f chaotic (hyperbolic)

Assumptions

Convergence | 4 Eg 9 S 81: f(e) - 20

Convergence
Hamiltonian systems

Perturb this dynamics so that total energy ), Ex is
conserved.



Coupling

Coupled dynamics

Coupled chaos.

Local energy

S Coupling: nearby cells interact, exchange energy
Coupling

L B, = Ex+Fx(E.0)
f(QX) + gX(E’ 9)

environment 9/
X

Slow dynamics

Slow dynamics
annealed

Slow dynamics, Where E = (EU)UEZd’ 0 = (QU)UGZd' Demand

quenched
Linear problem

» Fx,gx depend on 6, E, for u near x only

Assumptions

» > Fx(E,0) =0forall E,§. This is guaranteed by

Scaling limit

RG for maps tak| ng

s F(E.,0) =V - J(E,0)

Convergence

ST V discrete gradient.

Hamiltonian systems

Then total energy >, Ex conserved.



Diffusion

Coupled dynamics

e Let,att =0, Ex — T as |x| — oo.

o Show Ex(t) diffuses to T almost surely in 6(0)
Diffusion for maps

Fzsntd)tvr: aaaaa Ex(t) _ T ~ t—d/2e—X2/Nt

LIEL(L2t) — T) — e **/5t as L — oo

Hydrodynamic scaling limit:
e » Let Ex(0) = 7(ex)
pasmpins » Show: lim__q E(t/e?, x/e) = 7(t, x) satisfies

Hamiltonian systems 7_ — v . (K}(T)VT)

almost surely in 6(0).



Fast dynamics

Coupled dynamics
Coupled chaos
Local energy

- Dynamics of the chaotic variables
e » Letd, c S, x ez

» Let g depend only on 6:

Slow dynamics

Slow dynamics
annealed

prapel Ox(t+1) = 20x(t) + gx(6(1))
» g small, real analytic, local perturbation:
Scaling limit

0
Fixed point gx] S 66_ |X_y|
Trivial case 89}/

Assumptions
Convergence
Convergence
Hamiltonian systems

Then #-dynamics is space time chaotic.



Random environment

Coupled dynamics

Coupled chaos.

Local energy

Diffusion . . .
om. Space time mixing dynamics
Coupling

Diffusion for maps

Fast dynamics

Random

S E(Fx(0(1))Gy(6(0))) — E(Fx(0())EG,(6(0)) < Ce~ct+x=¥I)

» E be expectation in m(d6(0))
» m Lebesgue measure on (S’ )Zd
» F, G smooth, local functions of #

e Sampling 6(0) with m makes 6x(t) random variables.
e 0x(t) acts as random environment for the slow variables E.

Environment is weakly correlated in space and time.



Slow dynamics

Coupled dynamics

Coupled chaos.

Local energy

Diffusion . .

o Dynamics of slow variables:
Coupling

Diffusion for maps

. Ex(t+1) — Ex(t) = V - Jx(E(1),6(1))

environment

Slow dynamics

e with 6x(t) random, weakly correlated in space and time

Slow dynamics,
quenched

Slow dynamics is a random nonlinear drift
Result
Assumptions

To prove E,(t) diffuses a.s. in (0) amounts to prove
Scag i quenched diffusion for Ex(t).

RG for maps
Fixed point

Trivial case A me:
Assumptions ssume:
Convergence

P » Ji(E,0) real analyticin E, 6§
» Local, translation and rotation symmetric



Slow dynamics: annealed
Consider first the annealed case, i.e. take average over 6:

Ex(t+1) — Ex(t) = V- E[U(E(}),")] :=V - Ix(E(})).
Then
Jx(E) =0, E constant
Expand around E constant:
T(E) =) r(E)yVEy
y

by analyticity, isotropy and locality.

Annealed dynamics is a discrete nonlinear diffusion

E(t+1) — E(t) = V - k(E(t))VE(?)



Slow dynamics: quenched

Coupled dynamics
Coupled chaos
Local energy
Diffusion

o Let
Bx(E(1), 1) = Jx(E(1), (1)) — E[Jx(E(1),-)]

be the fluctuating part. Then slow dynamics becomes

E(t+1)— E(t) = V- s(E(t)VE(t) + V - B(E(t), 1)

Linear problem
Result

i.e. nonlinear diffusion with random drift:

EB(E,t) =0

Physically expect x(E(t)) positive and hope for 3 to be a
small perturbation.



Example: Linear problem

Coupled dynamics . . - .
Suppose the slow dynamics is linear in E. Then

E?u:hng EX(t + 1) = Z pr(t)Ey(t)
y

Diffusion for maps
Fast dynamics

Random
environment

— with

> py(t)=1.

E;Jrz:rpevoblem X

s Suppose also py, > 0. Then

PR Pxy (1) are transition probabilities of a random walk

L. Ex(t)is (proportional to) the probability of finding the walker
at x attime t

Convergence
Hamiltonian systems

Pxy(t) space and time dependent, random i.e. Random
walk in random environment

Prove quenched CLT for such walks



Result

Coupled dynamics

Coupled chaos.

Local energy

Diffusion

o Control nonlinear perturbation of RWRE

Diffusion for maps

e, E(t+1)— E(t) =V - x(E())VE(D) + V- H(E(1). 1)

Slow dynamics

= iy (B) = k(X = ¥) + Ky (E)

Slow dynamics,
quenched

with x strictly positive operator, k, 5 small, local and analytic

in |SE|o0 < 6.
Eh Result. Let £,(0) — 0 as t — oco. Almost surely in 6(0)

Assumptions d 2 —X2 kit

LOE; (L2t) — Ce ™ /%t as [ — o
Convergence

Hamiltonian systems

(in norm [|(1 + |x|9t") E||o0)



Assumptions

Coupled dynamics
Coupled chaos
Local energy

Diffusion
cmL

Coupling

Diffusion for maps ( E k

Fast dynamics Xy XyA
Random

environment ACZd

Slow dynamics

:J?nv;:igam\cs ﬁx(t, E) - Z 6XAB(t7 E)

Slow dynamics,

quenched A7 BCZd

Linear problem
Result

Assumptions with kxyAs Oxap satisfying

Scaling

zcea::(g’:::s | 4 Ana|ytIC |n HSEHOO < 6
d(x,A)

Fixed point —
> |kxyal < ce
Assumptions

> [xaB: Bxap independent if BN B = ()

Convergence

Hamiltonian systems > E(ﬂXAB)Z < ee—d(x,y,A)



Scaling

Coupled dynamics
Coupled chaos
Local energy

Diffusion Dynamlcs E(t+ 1,X) = f(t7X7 E(t))

CML

wwme  Scaling map S;: (SLE)(X) = LYE(Lx)

Fast dynamics

nnnnnnnnnn : Rescaled energies. Let L > 1

_ E(t) = SinE(L2?).
These flow with renormalized dynamics
En(t+1) = fa(t, En(1)).
P— with

fot) = Spa(F(L2"t + 12" — 1) o - - - 0 F(L2"1))S;-n



Scaling limit

Coupled dynamics

Coupled chaos

Local energy

Diffusion

CML

Couping Scaling limit for E:
Diffusion for maps

Fast dynamics

L lim L"9E(L2" L"x) = lim Ex(x)
Slow dynamics n—oo n—oo

Slow dynamics
annealed

S where
S En(x) = En(1,x).

Assumptions
st E, flow with the Renormalization group flow

RG for maps.

Fixed point

_ 2 _ o

. Eni1 = Si[fa(L 1)o o fn(1)(En)]
Convergence

Convergence

e Where fp is the scale L” renormalized dynamics.



Renormalization group for for maps

Coupled dynamics
Coupled chaos
Local energy
Diffusion

cmL

Coupling

Diffusion for maps

The dynamics changes with scale as

Random
environment

Slow dynamics fn+1 = R fn

Slow dynamics
annealed

Slow dynamics,

quenched W|th

— 2 2

RE(t) = SLA(L3(t+1) = 1) 0o F(L2H)S,.

RG for maps

e R is the Renormalization group flow in a space of random
fele dynamical systems.

Convergence



Fixed point

Coupled dynamics

We prove: almost surely in 6(0) the renormalized maps

Local energy

Diffusion Converge

oML
Coupling fn — Rnf N f*
Diffusion for maps

Fast dynamics

where the fixed point is nonrandom and linear:

environment
Slow dynamics

Slow dynamics

f*(E) = e"2E.

Slow dynamics
quenched
Linear problem

Moreover, the renormalized energies converge almost

Assumptions

surely to the fixed point

Scaling limit
RG for maps

Fixed point 2

* _
Trivial case En — E = Ae X /41{
Assumptions

Convergence

B which is the diffusive scaling limit. In other words:

Hamiltonian systems

» Noise is irrelevant
» Nonlinearity is irrelevant



Trivial case

Coupled dynamics

Coupled chaos

Local energy . .

Difusion Consider linear problem

CML

Coupling

Diffusion for maps

f(E.x) =) T(x—y)E(y)
Random

environment y
Slow dynamics

Slow dynamics

o Then f, = T,E with

Slow dynamics,
quenched

Linear problem on
e ) — jnhd =L n,

To() = LOOT* (L0,

Scaling

Scaling limit .

RG for maps l.e.

Fixed poin A A _ 2n Moo g2
e To(k) = T(L k)" ~ gl"ak—ck
Assumptions

oo it T(k) =1+ a-k — ck®+ o(k?).

Hamiltonian systems

Drift term a is a relevant variable, in our case random and
nonlinear.



Coupled dynamics
Coupled chaos
Local energy
Diffusion

cmL

Coupling

Diffusion for maps
Fast dynamics

Random
environment

Slow dynamics

Slow dynamics
annealed

Slow dynamics,
quenched

Linear problem
Result

Assumptions
Scaling

Scaling limit

RG for maps

Fixed point

Trivial case
Assumptions
Convergence
Convergence
Hamiltonian systems

Assumptions

Recall our assumptions:

f(tE)=(1+KA)E+ Y V-ka(E)VE+ Y V-fap(t, E)
Aczd A,Bczd

with kxya, Bxap satisfying
» Analytic in [|SE||c < 0
> |hxya| < ce”IxA)

» Bxas, Bvas independentif BNB =10

> E(fuap)? < ce”d0rA)



Convergence

Coupled dynamics

Coupled chaos

Local energy

Diffusion

cmL Th
Coupling en
Diffusion for maps

fo(t, E) = (1+5,0)E+ > V-HAE)VE+ Y V-Bag(t,E)

environment
Aczd A,Bczd

Slow dynamics

Slow dynamics:

annealed

Slow dynamics, n n
quenched H . .
Linear problem Wlth nyAy XAB SatISfylng

Result

sesumptins > Analytic in |SE||s < L5

Scaling
FREE > |kl < e 6= d(xA)

Fixed point . .

TAr\v\a\case » )I(IAB’ /B)IZ/A/B/ |ndependent if BN B = @
ssumptions

onvergence 2 _ A

Sunvchcncc > E( QAB) < Ene d(va: )

Hamiltonian systems

with ¢, — 0 as n — oo.



Coupled dynamics
Coupled chaos
Local energy
Diffusion

cmL

Coupling

Diffusion for maps
Fast dynamics

Random
environment

Slow dynamics

Slow dynamics
annealed

Slow dynamics,
quenched

Linear problem
Result

Assumptions
Scaling

Scaling limit

RG for maps

Fixed point

Trivial case
Assumptions
Convergence
Convergence
Hamiltonian systems

Convergence

» Analyticity strip expands by L9 each step —
perturbative region expands upon iteration.
Nonlinearities in E irrelevant.

» Noise variance contracts i.e. noise irrelevant

» Need also large deviation estimate: Scale L" drift
(noise) can be arbitarily large, but with small probability,
going down with n



Hamiltonian systems

Coupled dynamics
Coupled chaos
Local energy
Diffusion

cmL

Coupling

Diffusion for maps

Fast dynamics

What kind of CML should model Hamiltonian systems?

environment
Slow dynamics

Slow dynamics

» Rare configurations of E can slow down mixing of

Slow dynamics

quenched energies and 9 dynamiCS

» Annealed system is probably not uniformly elliptic and
Scaing It random drift can create traps with long lifetimes

S These issues can be studied with the RG.

S

Hamiltonian systems
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