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Macroscopic systems out of equilibrium

1. The macroscopic state is completely described by the local
density ρ = ρ(t, x) and the associated current j = j(t, x).

2. The macroscopic evolution is given by the continuity equation

∂tρ+∇ · j = 0 (1)

together with the constitutive equation

j = J(ρ) = −D(ρ)∇ρ+ χ(ρ)E (2)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are
d× d positive matrices. The transport coefficients D and χ
satisfy the local Einstein relation

D(ρ) = χ(ρ) f ′′0 (ρ) (3)

where f0 is the equilibrium free energy of the homogeneous
system.

3 / 24



The equations (1)–(2) have to be supplemented by the appropriate
boundary conditions on ∂Λ due to the interaction with the external
reservoirs. Recalling that λ0(x), x ∈ ∂Λ, is the chemical potential
of the external reservoirs, these boundary conditions are

f ′0
(
ρ(x)

)
= λ0(x) x ∈ ∂Λ (4)

We denote by ρ̄ = ρ̄(x), x ∈ Λ, the stationary solution, assumed to
be unique, of (1), (2), and (4).
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To state the third postulate, we need some preliminaries. Consider
a time dependent variation F = F (t, x) of the external field so that
the total applied field is E + F . The local current then becomes
j = JF (ρ) = J(ρ) + χ(ρ)F . Given a time interval [T1, T2], we
compute the energy necessary to create the extra current JF − J
and drive the system along the corresponding trajectory:

L[T1,T2](F ) =

∫ T2

T1

dt
〈[
JF (ρF )−J(ρF )

]
·F

〉
=

∫ T2

T1

dt
〈
F ·χ(ρF )F

〉
(5)

where · is the scalar product in Rd, 〈·〉 is the integration over Λ,
and ρF is the solution of the continuity equation with current
j = JF (ρ).

5 / 24



We define a cost functional on the set of space time trajectories as
follows. Given a trajectory ρ̂ = ρ̂(t, x), t ∈ [T1, T2], x ∈ Λ, we set

I[T1,T2](ρ̂) =
1

4
inf

F : ρF =ρ̂
L[T1,T2](F ) (6)

namely we minimize over the variations F of the applied field
which produce the trajectory ρ̂. The introduction of this functional
in the context of fluid dynamics equations appears to be new. The
functional I (with the factor 1/4) has a precise statistical
interpretation within the context of stochastic lattice gases: it
gives the asymptotics, as the number of degrees of freedom
diverges, of the probability of observing a space time fluctuation of
the empirical density.
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The minimization in (6) can be performed explicitely

I[T1,T2](ρ̂) =
1

4

∫ T2

T1

dt
〈[
∂tρ̂+∇·J(ρ̂)

]
K(ρ̂)−1

[
∂tρ̂+∇·J(ρ̂)

]〉
(7)

where the positive operator K(ρ̂) is defined on functions u : Λ → R

vanishing at the boundary ∂Λ by K(ρ̂)u = −∇ ·
(
χ(ρ̂)∇u

)
.
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Our third postulate then characterizes the free energy F(ρ) of the
system with a density profile ρ = ρ(x), x ∈ Λ, as the minimal cost
to reach, starting from the stationary profile ρ̄, the density profile
ρ, in an infinitely long time interval.

3. The nonequilibrium free energy of the system is

F(ρ) = inf
ρ̂ : ρ̂(−∞)=ρ̄

ρ̂(0)=ρ

I[−∞,0](ρ̂) (8)
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By considering the functional in (7) as an action functional in
variables ρ̂ and ∂tρ̂ and performing a Legendre transform, the
associated Hamiltonian is

H(ρ,Π) =
〈
∇Π · χ(ρ)∇Π

〉
+

〈
∇Π · J(ρ)

〉
(9)

where the momentum Π vanishes at the boundary of Λ. By
noticing that the stationary solution of the hydrodynamic equation
corresponds to the equilibrium point (ρ̄, 0) of the system with
Hamiltonian H and H(ρ̄, 0) = 0, F must satisfy the
Hamilton-Jacobi equation H

(
ρ, δF/δρ

)
= 0.
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more explicitely the functional F is the maximal solution of the
infinite dimensional Hamilton-Jacobi equation〈

∇δF
δρ

· χ(ρ)∇δF
δρ

〉
−

〈δF
δρ

∇ · J(ρ)
〉

= 0 (10)

where, for ρ that satisfies (4), δF/δρ vanishes at the boundary of
Λ. By maximal solution we mean that any solution to (10)
(satisfying F (ρ̄) = 0) is a lower bound for F , as defined in (8).
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The optimal trajectory ρ∗ for the variational problem (8) is
characterized as follows. Let

J∗(ρ) = −2χ(ρ)∇δF
δρ

− J(ρ) (11)

then ρ∗ is the time reversal of the solution to

∂tρ+∇·J∗(ρ) = ∂tρ+∇·
{
D(ρ)∇ρ−χ(ρ)

[
E+2∇δF

δρ

]}
= 0 (12)

with the boundary condition (4).
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The classical thermodynamic setting considers only spatially
homogeneous systems in which ρ does not depend on x. In this
case the variation of the free energy between ρ̄ and ρ is the
minimal work required to drive the system from ρ̄ to ρ, which is
realized by a quasi static transformation through equilibrium states.

The previous analysis however shows that, starting from an
equilibrium or a stationary nonequilibrium state ρ̄, optimal time
dependent trajectories exist which over an an infinite interval of
time and through nonequilibrium states, take the system from ρ̄
and ρ. In the first case it is easy to show that the same free energy
difference is obtained as in the classical thermodynamic setting. In
nonequilibrium our definition of free energy is based on the notion
of optimal trajectory and for the moment we have no other
definition to compare with.
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Characterization of equilibrium states

We define the system to be in equilibrium if and only if the current
in the stationary profile ρ̄ vanishes, i.e. J(ρ̄) = 0. In this case, even
in presence of external fields (e.g. gravitational or centrifugal
fields), the Hamilton-Jacobi equation can be solved. Let

f(ρ, x) =

∫ ρ

ρ̄(x)
dr

∫ r

ρ̄(x)
dr′ f ′′0 (r′) = f0(ρ)− f0(ρ̄(x))

−f ′0
(
ρ̄(x)

)[
ρ− ρ̄(x)

]
(13)

the maximal solution of H-J is

F(ρ) =

∫
Λ
dx f

(
ρ(x), x

)
(14)
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Define macroscopic reversibility

J∗(ρ) = −2χ(ρ)∇δF
δρ

− J(ρ) = J(ρ) (15)

We have the following theorem
J(ρ̄) = 0 is equivalent to macroscopic reversibility.
In the case of macroscopic reversibility the Hamilton-Jacobi
equation reduces to

J(ρ) = −χ(ρ)∇δF
δρ

(ρ) (16)

We remark that, even if the free energy F is a non local
functional, the equality J(ρ) = J∗(ρ) implies that the
thermodynamic force ∇δF/δρ is local.
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Correlation functions

We are concerned only with macroscopic correlations which are a
generic feature of nonequilibrium models. Microscopic correlations
which decay as a summable power law disappear at the
macroscopic level.
We introduce the pressure functional as the Legendre transform of
free energy F

G(h) = sup
ρ

{
〈hρ〉 − F(ρ)

}
By Legendre duality we have the change of variable formulae
h = δF

δρ , ρ = δG
δh , so that the Hamilton-Jacobi equation (10) can

then be rewritten in terms of G as〈
∇h · χ

(δG
δh

)
∇h

〉
−

〈
∇h ·D

(δG
δh

)
∇δG
δh
−χ

(δG
δh

)
E

〉
= 0 (17)

where h vanishes at the boundary of Λ. As for equilibrium systems,
G is the generating functional of the correlation functions.
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We define

Cn(x1, . . . , xn) =
δnG

δh(x1) · · · δh(xn)

∣∣∣
h=0

(18)

By expanding (17) around the stationary state we obtain after non
trivial manipulations and combinatorics the following recursive
equations for the correlation functions

1

(n+ 1)!
L†n+1Cn+1(x1, x2, . . . , xn+1) (19)

=

{ ∑
~ι

N(~ι)=n−1

1

K(~ι)
∇x1 ·

(
χ(Σ(~ι))(ρ̄(x1))C~ι(x1, . . . , xn)∇x1δ(x1 − xn+1)

)

−
∑

~ι
N(~ι)=n,in=0

1

K(~ι)
∇x1 · ∇x1

(
D(Σ(~ι)−1)(ρ̄(x1))C~ι(x1, . . . , xn+1)

)

+
∑

~ι
N(~ι)=n,in=0

1

K(~ι)
∇x1 ·

(
χ(Σ(~ι))(ρ̄(x1))C~ι(x1, . . . , xn+1)E(x1)

)}sym
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L†n+1 is the formal adjoint of the operator Ln+1 =
∑n+1

k=1 Lxk
,

where Lx is defined

Lx = Dij(ρ̄(x))∂xi∂xj + χ′ij(ρ̄(x))Ej(x)∂xi (20)

For n = 1, that is for the density-density correlation function the
general equation reduces to

L†B(x, y) = α(x)δ(x− y) (21)

where B(x, y) is defined by

C(x, y) = Ceq(x)δ(x− y) +B(x, y) (22)

and

α(x) = ∂xi

[
χ′ij

(
ρ̄(x)

)
D−1

jk

(
ρ̄(x)

)
J̄k(x)

]
(23)
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Thermodynamics of currents

Currents involve time in their definition so it is natural to consider
space-time thermodynamics. We define a cost functional to
produce a current trajectory j(t, x) by rewriting (5) in terms of
j(t, x) instead of ρ(t, x)

I[0,T ](j) =
1

4

∫ T

0
dt

〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
(24)

in which we recall that

J(ρ) = −1

2
D(ρ)∇ρ+ χ(ρ)E .

where ρ = ρ(t, u) is obtained by solving the continuity equation
∂tρ+∇ · j = 0.
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Let J(x) be the time average of j(t, x) that we assume divergence
free and define

Φ(J) = lim
T→∞

inf
j

1

T
I[0,T ](j) , (25)

where the infimum is carried over all paths j = j(t, u) having time
average J .
This functional is convex and satisfies a Gallavotti-Cohen type
relationship

Φ(J)−Φ(−J) = Φ(J)−Φa(J) = −2〈J,E〉+
∫

∂Λ
dΣλ0 J · n̂ (26)

Note that the right hand side of (26) is the power produced by the
external field and the boundary reservoirs (recall E is the external
field and λ0 the chemical potential of the boundary reservoirs).
Entropy production can be simply derived from Φ(J)).
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Dynamical phase transitions

Let us denote by U the functional obtained by restricting the
infimum in (25) to divergence free current paths j, i.e.

U(J) = inf
ρ

1

2

〈
[J − J(ρ)], χ(ρ)−1[J − J(ρ)]

〉
(27)

where the infimum is carried out over all the density profiles
ρ = ρ(u) satisfying the appropriate boundary conditions. From
(25) and (27) it follows that Φ ≤ U .
There are two possibilities, Φ = U or the strict inequality Φ < U .
They correspond to different dynamical states. The transition from
one regime to the other is a phase transition.
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Consider as an example a ring in which an average current J is
flowing in presence of an external field E. Depending on J , E,
D(ρ), χ(ρ) and their derivatives, a constant density profile or a
traveling wave is the optimal choice. It has been shown that in the
weakly asymmetric exclusion model (by Bodineau and Derrida) and
in the Kipnis-Marchioro-Presutti model (by us) these transitions
exist.
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Universality in current fluctuations
C. Appert-Rolland, B. Derrida, V. Lecomte, F. van Wijland Phys. Rev E 78, 021122
(2008)

Let Q(t) =
∫ t
0 j(t

′)dt′ the total integrated current during the time
interval (0, t). Define the generating function of the cumulants of
Q

ψJ(s) = lim
t→∞

ln〈exp−sQ〉
t

= Φ∗(s) (28)

where the brackets denote an average over the time evolution
during (0, t) and Φ∗(s) is the Legendre transform of Φ(J). The
authors estimate Φ(J) from the large deviation formula

Prob({ρ(x, t), j(x, t)}) ' exp−L
4

∫ T

0
dt

〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
from which they obtain

lim
t→∞

〈Q2n〉
t

= B2n−2
2n!

n!(n− 1)!
D(

−χχ′′

8D2
)nL2n−2
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Stationary nonequilibrium properties for a heat conduction model

Cédric Bernardin*
Université de Lyon, CNRS (UMPA), and Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 France

!Received 2 May 2008; published 26 August 2008"

We consider a stochastic heat conduction model for solids composed of N interacting atoms. The system is
in contact with two heat baths at different temperatures T! and Tr. The bulk dynamics conserves two quantities:
the energy and the deformation between atoms. If T!!Tr, a heat flux occurs in the system. For large N, the
system adopts a linear temperature profile between T! and Tr. We establish the hydrodynamic limit for the two
conserved quantities. We introduce the fluctuation field of the energy and of the deformation in the nonequi-
librium steady state. As N goes to infinity, we show that this field converges to a Gaussian field and we
compute the limiting covariance matrix. The main contribution of the paper is the study of large deviations for
the temperature profile in the nonequilibrium stationary state. A variational formula for the rate function is
derived following the recent macroscopic fluctuation theory of Bertini et al. #J. Stat. Phys. 107, 635 !2002";
Math. Phys., Anal. Geom. 6, 231 !2003"; J. Stat. Phys. 121, 843 !2005"$.

DOI: 10.1103/PhysRevE.78.021134 PACS number!s": 05.60.Cd

I. INTRODUCTION

The understanding of the steady state of nonequilibrium
systems is the subject of intense research. The typical situa-
tion is a solid in contact with two heat baths at different
temperatures. Unlike equilibrium systems, where the
Boltzmann-Gibbs formalism provides an explicit description
of the steady state, no equivalent theory is available for a
nonequilibrium stationary state !NESS".

In the last few years, efforts have been concentrated on
stochastic lattice gases #1$. For these, valuable information
on the steady state, like the typical macroscopic profile of
conserved quantities and the form of the Gaussian fluctua-
tions around this profile, has been obtained #1$. Recently,
Bertini et al. proposed a definition of nonequilibrium ther-
modynamic functionals via a macroscopic fluctuation theory
!MFT" which for large diffusive systems gives the probabil-
ity of atypical profiles #2,3$ in the NESS. The method relies
on the theory of hydrodynamic limits and can be seen as an
infinite-dimensional generalization of the Freidlin-Wentzel
theory. The approach of Bertini et al. provides a variational
principle from which one can write the equation of the time
evolution of the typical profile responsible for a given fluc-
tuation. The resolution of this variational problem is in gen-
eral very difficult, however, and it has been done for only
two models: the symmetric simple exclusion process !SSEP"
#3$ and the Kipnis-Marchioro-Presutti !KMP" model #4$.
Hence, it is of extreme importance to identify simple models
where one can test the validity of the MFT.

The most studied stochastic lattice gas is the simple ex-
clusion process. Particles perform random walks on a lattice
but jumps to occupied sites are suppressed. Hence the only
interaction is due to the exclusion condition. The only quan-
tity conserved by the bulk dynamics is the number of par-
ticles. In this situation, the heat reservoirs are replaced by
particle reservoirs which fix the density at the boundaries.
The KMP process is a Markov process composed of particles

on a lattice. Each particle has an energy and a stochastic
mechanism exchanges energy between nearest-neigbor par-
ticles #5$.

The real motivation is to extend the MFT for Hamiltonian
systems #6$. Unfortunately, for these systems, even the deri-
vation of the typical profile of temperature adopted by the
system in the steady state is beyond the range of the actual
techniques #7$. The difficulty is to show that the systems
behave ergodically, e.g., that the only time-invariant mea-
sures locally absolutely continuous with respect to the Le-
besgue measure are, for infinitely extended spatially uniform
systems, of the Gibbs type. For some stochastic lattice gases
it can be proven but it remains a challenging problem for
Hamiltonian dynamics.

We investigate here the MFT for a system of harmonic
oscillators perturbed by a conservative noise #8–10$. These
stochastic perturbations are here to reproduce !qualitatively"
the effective !deterministic" randomness coming from the
Hamiltonian dynamics #11–13$. This hybrid system can be
considered as a first modest step in the direction of purely
Hamiltonian systems.

From a more technical point of view, the SSEP and KMP
process are gradient systems and have only one conserved
quantity. For gradient systems the microscopic current is a
gradient #14$ so that the macroscopic diffusive character of
the system is trivial. In dealing with nongradient models, we
have to show that, microscopically, the current is a gradient
up to a small fluctuating term. The decomposition of the
current into these two terms is known in the hydrodynamic
limit literature as a fluctuation-dissipation equation #15$. In
general, it is extremely difficult to solve such an equation.

Our model has two conserved quantities, energy and de-
formation, and is nongradient. But fortunately an exact
fluctuation-dissipation equation can be established. In fact
we are not able to apply the MFT for the two conserved
quantities but only for the temperature field, which is a
simple, but nonlinear, functional of the energy and deforma-
tion fields.

The paper is organized as follows. In Sec. II, we define
the model. In Sec. III we establish the fluctuation-dissipation
equation and obtain hydrodynamic limits for the system on a*cbernard@umpa.ens-lyon.fr

PHYSICAL REVIEW E 78, 021134 !2008"
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Summary

We have developed a phenomenological theory for the description
of stationary nonequilibrium states of diffusive systems requiring as
input the transport coefficients which are measurable quantities. In
particular

1. we have introduced a variational principle leading to a natural
definition of the free energy for nonequilibrium states.

2. this principle implies that macroscopic long range correlations
are a generic property of stationary nonequilibrium as
experimentally observed.

3. we have introduced a new thermodynamic functional Φ(J) of
time averaged currents. Its singularities are associated to the
existence of dynamical phase transitions which spontaneously
break time translational invariance.
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