DIPARTIMENTO DI FISICA /_)

SAPIENZA IN

UNIVERSITA DI ROMA . .
Istituto Nazionale
di Fisica Nucleare

The large deviation approach to
nonequilibrium diffusive systems: recent
developments and an assessment

Giovanni Jona-Lasinio

Ziirich, June 8 - 12, 2009

24



L. Bertini® A. De Sole? D. Gabrielli® G. Jona-Lasinio* C. Landim®

1

Dipartimento di Matematica, Universita di Roma La Sapienza

P.le A. Moro 2, 00185 Roma, Italy

E-mail: bertini@mat.uniromal.it

Dipartimento di Matematica, Universita di Roma La Sapienza, Roma, lItaly
Mathematics Department, Harvard University, Cambridge MA, USA
E-mail: desole@mat.uniromal.it

Dipartimento di Matematica, Universita dell'Aquila

67100 Coppito, L'Aquila, Italy

E-mail: gabriell@univaq.it

Dipartimento di Fisica and INFN, Universita di Roma La Sapienza

P.le A. Moro 2, 00185 Roma, ltaly

E-mail: gianni.jona@romal.infn.it

IMPA, Estrada Dona Castorina 110, J. Botanico, 22460 Rio de Janeiro, Brazil
CNRS UPRES-A 6085, Université de Rouen,

76128 Mont—Saint—Aignan Cedex, France

E-mail: 1landim@impa.br

N

24



Macroscopic systems out of equilibrium

1. The macroscopic state is completely described by the local
density p = p(t,z) and the associated current j = j(t,x).

2. The macroscopic evolution is given by the continuity equation
together with the constitutive equation

j=J(p)=-D(p)Vp+x(p)E (2)

where the diffusion coefficient D(p) and the mobility x(p) are
d x d positive matrices. The transport coefficients D and x
satisfy the local Einstein relation

D(p) = x(p) fo (p) 3)

where fq is the equilibrium free energy of the homogeneous
system.



The equations (1)—(2) have to be supplemented by the appropriate
boundary conditions on OA due to the interaction with the external
reservoirs. Recalling that Ao(x), = € OA, is the chemical potential
of the external reservoirs, these boundary conditions are

£3(p(2)) = Aoa) v € On (4)

We denote by p = p(x), x € A, the stationary solution, assumed to
be unique, of (1), (2), and (4).
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To state the third postulate, we need some preliminaries. Consider
a time dependent variation F' = F(t, ) of the external field so that
the total applied field is &£ 4+ F'. The local current then becomes

i =JE(p) = J(p) + x(p)F. Given a time interval [T}, T5], we
compute the energy necessary to create the extra current J& — J
and drive the system along the corresponding trajectory:

T 1>
Do) = [ (776165 F) = [ arFoF)
1 1
(5)
where - is the scalar product in R< (-) is the integration over A,
and p! is the solution of the continuity equation with current

j=J"(p).
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We define a cost functional on the set of space time trajectories as
follows. Given a trajectory p = p(t,z), t € [11,T5],z € A, we set

1
= Z F;I,?bf:,a L[TLTQ](F) (6)

Iy 1) (P)
namely we minimize over the variations F' of the applied field
which produce the trajectory p. The introduction of this functional
in the context of fluid dynamics equations appears to be new. The
functional I (with the factor 1/4) has a precise statistical
interpretation within the context of stochastic lattice gases: it
gives the asymptotics, as the number of degrees of freedom
diverges, of the probability of observing a space time fluctuation of
the empirical density.

6
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The minimization in (6) can be performed explicitely
N R N =17 A N
Iy 2 (P) = /T dt<[0tp+V-J(p)] K(p) [8t,o+V-J(p)]> (7)
1

where the positive operator K () is defined on functions u: A — R
vanishing at the boundary 9A by K(p)u = —V - (x(p)Vu).
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Our third postulate then characterizes the free energy F(p) of the
system with a density profile p = p(z), x € A, as the minimal cost
to reach, starting from the stationary profile p, the density profile
p, in an infinitely long time interval.

3. The nonequilibrium free energy of the system is

Flp)=__inf  I_0(P) (8)
p:p(—o0)=p
p(0)=p



By considering the functional in (7) as an action functional in
variables p and 9;p and performing a Legendre transform, the
associated Hamiltonian is

H(p, 1) = (V- X(p) V1) + (V- (p)) 9)

where the momentum T1 vanishes at the boundary of A. By
noticing that the stationary solution of the hydrodynamic equation
corresponds to the equilibrium point (7,0) of the system with
Hamiltonian H and H(p,0) = 0, F must satisfy the
Hamilton-Jacobi equation H(p,8F/dp) = 0.
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more explicitely the functional F is the maximal solution of the
infinite dimensional Hamilton-Jacobi equation
< oF 5}'> <5}'

5 V- J(p )> ~0 (10)

where, for p that satisfies (4), . /dp vanishes at the boundary of
A. By maximal solution we mean that any solution to (10)
(satisfying F'(p) = 0) is a lower bound for F, as defined in (8).
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The optimal trajectory p* for the variational problem (8) is
characterized as follows. Let
N oF
J*(p) = —2x(p)Vg —J(p) (11)

then p* is the time reversal of the solution to

Oup+Y-T"(p) = Dp+V-{ D(p)Vp—x(p) | E+2 vfsﬂ =0 (12

with the boundary condition (4).
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The classical thermodynamic setting considers only spatially
homogeneous systems in which p does not depend on . In this
case the variation of the free energy between p and p is the
minimal work required to drive the system from p to p, which is
realized by a quasi static transformation through equilibrium states.

The previous analysis however shows that, starting from an
equilibrium or a stationary nonequilibrium state p, optimal time
dependent trajectories exist which over an an infinite interval of
time and through nonequilibrium states, take the system from p
and p. In the first case it is easy to show that the same free energy
difference is obtained as in the classical thermodynamic setting. In
nonequilibrium our definition of free energy is based on the notion
of optimal trajectory and for the moment we have no other
definition to compare with.
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Characterization of equilibrium states

We define the system to be in equilibrium if and only if the current
in the stationary profile p vanishes, i.e. J(p) = 0. In this case, even
in presence of external fields (e.g. gravitational or centrifugal
fields), the Hamilton-Jacobi equation can be solved. Let

,T) = pdr Tdr' I(r') = — fo(p(z
f(or) Am A@ FLG) = folp) — o))
—fo(p(x)) [p — p()] (13)

the maximal solution of H-J is

ﬂ@zAmem@ (14)
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Define macroscopic reversibility

7(0) = ~2(0)VL ~ J(p) = (o) (15)

op
We have the following theorem
J(p) = 0 is equivalent to macroscopic reversibility.
In the case of macroscopic reversibility the Hamilton-Jacobi
equation reduces to

0F

J(p) = *X(P)V%(P) (16)

We remark that, even if the free energy F is a non local
functional, the equality J(p) = J*(p) implies that the
thermodynamic force V§F /dp is local.
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Correlation functions

We are concerned only with macroscopic correlations which are a
generic feature of nonequilibrium models. Microscopic correlations
which decay as a summable power law disappear at the
macroscopic level.

We introduce the pressure functional as the Legendre transform of
free energy F

G(h) ISL[J)p{<hp> — F(p)}

By Legendre duality we have the change of variable formulae
h = 5p, p= 59 , so that the Hamilton-Jacobi equation (10) can
then be rewrltten in terms of G as

oG 00\ 09 oG
<Vh‘ (6h)Vh> <Vh D(éhW%_ (%>E> =0 (1)
where h vanishes at the boundary of A. As for equilibrium systems,
G is the generating functional of the correlation functions.
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We define
g
~ Sh(x1) - 6h(w,) In=0
By expanding (17) around the stationary state we obtain after non
trivial manipulations and combinatorics the following recursive
equations for the correlation functions

1

Co(z1,. .., 1) (18)

mLLHCnH(Ma T2,y Tnl)
1 > (2 -
— { Z KTE)V“ . (X( D) (p(21))CAx1, - - ., )V, 0(z1 — Ty
N(@®=n-1
-y 1. v (D(Z(F)—l)(ﬁ(m))C—(xl g;n+1)>
- K(Z) E 1 L ) ’
N(D)=n,in=0
1 sY1
(v -
X Ve (@) ,an)E(xl))}
N(D)=n,in=0
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EL_H is the formal adjoint of the operator £, 1 = ZZI% Ly,
where L, is defined

Ly = Dij(p(2))0x,0z; + Xi5(p(2)) E;j(2)0a, (20)

For n = 1, that is for the density-density correlation function the
general equation reduces to

£'B(z,y) = a(x)0(z — y) (21)
where B(x,y) is defined by
C(x,y) = Ceq(2)d(x — y) + B(z,y) (22)
and

(@) = O, [ ((x)) D! (5(x)) Ji(x)] (23)
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Thermodynamics of currents

Currents involve time in their definition so it is natural to consider
space-time thermodynamics. We define a cost functional to
produce a current trajectory j(¢,z) by rewriting (5) in terms of
j(t, x) instead of p(t,x)

Ton) = § [ a0l - SOOGS0 (2

in which we recall that

1

J(p) = =5D(P)Vp +x(P)E .

where p = p(t,u) is obtained by solving the continuity equation
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Let J(x) be the time average of j(t,z) that we assume divergence
free and define

1
®(J) = lim inf= T j 2
(J) Am it 0,71(7) ; (25)
where the infimum is carried over all paths j = j(t,u) having time
average J.
This functional is convex and satisfies a Gallavotti-Cohen type
relationship

S(J)—=d(—=J) =d(J)—d%(J) = —2(J, E>+/ dX \oJ- -7 (26)
IN
Note that the right hand side of (26) is the power produced by the
external field and the boundary reservoirs (recall E is the external
field and A\g the chemical potential of the boundary reservoirs).
Entropy production can be simply derived from ®(.J)).
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Dynamical phase transitions

Let us denote by U the functional obtained by restricting the
infimum in (25) to divergence free current paths j, i.e.

U(7) = inf (17 = TN W - T (2)

where the infimum is carried out over all the density profiles

p = p(u) satisfying the appropriate boundary conditions. From
(25) and (27) it follows that ® < U.

There are two possibilities, ® = U or the strict inequality ® < U.
They correspond to different dynamical states. The transition from
one regime to the other is a phase transition.
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Consider as an example a ring in which an average current J is
flowing in presence of an external field £. Depending on J, F,
D(p), x(p) and their derivatives, a constant density profile or a
traveling wave is the optimal choice. It has been shown that in the
weakly asymmetric exclusion model (by Bodineau and Derrida) and
in the Kipnis-Marchioro-Presutti model (by us) these transitions
exist.
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Universality in current fluctuations
C. Appert-Rolland, B. Derrida, V. Lecomte, F. van Wijland Phys. Rev E 78, 021122
(2008)

Let Q(t) = fgj(t’)dt’ the total integrated current during the time
interval (0,t). Define the generating function of the cumulants of

Q
by(s) = lim In(exp —s@)

t—00 t

= % (s) (28)

where the brackets denote an average over the time evolution
during (0,t) and ®*(s) is the Legendre transform of ®(J). The
authors estimate ®(.J) from the large deviation formula

Prob({p(, 1), iz, 1)) ~ exp — 1 / at 1 = TN (o) = T()])

from which they obtain

(@) 2n! XX\ p2n-2
= = By, D npAn
oot 221 (n — 1) (5p2)
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Stationary nonequilibrium properties for a heat conduction model

Cédric Bernardin™
Université de Lyon, CNRS (UMPA), and Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 France
(Received 2 May 2008; published 26 August 2008)

We consider a stochastic heat conduction model for solids composed of N interacting atoms. The system is
in contact with two heat baths at different temperatures 7y and 7',. The bulk dynamics conserves two quantities:
the energy and the deformation between atoms. If Ty # T, a heat flux occurs in the system. For large N, the
system adopts a linear temperature profile between T, and T,. We establish the hydrodynamic limit for the two
conserved quantities. We introduce the fluctuation field of the energy and of the deformation in the nonequi-
librium steady state. As N goes to infinity, we show that this field converges to a Gaussian field and we
compute the limiting covariance matrix. The main contribution of the paper is the study of large deviations for
the temperature profile in the nonequilibrium stationary state. A variational formula for the rate function is
derived following the recent macroscopic fluctuation theory of Bertini ez al. [J. Stat. Phys. 107, 635 (2002);
Math. Phys., Anal. Geom. 6, 231 (2003); J. Stat. Phys. 121, 843 (2005)].
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Summary

We have developed a phenomenological theory for the description
of stationary nonequilibrium states of diffusive systems requiring as
input the transport coefficients which are measurable quantities. In
particular

1. we have introduced a variational principle leading to a natural
definition of the free energy for nonequilibrium states.

2. this principle implies that macroscopic long range correlations
are a generic property of stationary nonequilibrium as
experimentally observed.

3. we have introduced a new thermodynamic functional ®(.J) of
time averaged currents. Its singularities are associated to the
existence of dynamical phase transitions which spontaneously
break time translational invariance.
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