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Semiclassical Wave Packets

To state time–dependent results in their most explicit form,

we need to discuss semiclassical wave packets φk(A,B, ~, a, η, x).

• These are generalizations of Harmonic oscillator states.

• They coincide with generalized squeezed states.

• In the molecular context, ~ will be ε2.

{φk(A,B, ~, a, η, x) } is an orthonormal basis of L2(Rd)
as k ranges over d–dimensional multi–indices.

• a ∈ Rd represents a classical position.

• η ∈ Rd represents a classical momentum.

• A and B are complex invertible d× d matrices that satisfy

AtB −BtA = 0 and A∗B +B∗A = 2 I.

The position uncertainty is determined by ε |A|, and

the momentum uncertainty is determined by ε |B|.
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φ0(A,B, ~, a, η, x) = π−d/4 ~−d/4 (det(A))−1/2

× exp
{
− (x− a) ·BA−1(x− a)/(2~) + iη · (x− a)/~

}
.

There are raising and lowering operators with the same

algebraic properties as with the Harmonic oscillator.

Define the Fourier Transform

(F~ f)(ξ) = (2π~)−d/2
∫
Rd

f(x) e−iξ·x/~ dx.

Then

(F~ φk(A,B, ~, a, η, ·))(ξ) = e−ia·η/~ φk(B,A, ~, η,−a, ξ).
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If V (X) is smooth and bounded below, then

eiS(t)/~ ∑
|k|≤K

ck φk(A(t), B(t), ~, a(t), η(t), X)

solves the time–dependent Schrödinger equation

i ~ ∂ψ

∂t
= − ~2

2
∆X ψ + V (X) ψ,

up to an O(~1/2) error.

Here ȧ(t) = η(t),

η̇(t) = − V (1)(a(t)),

Ȧ(t) = i B(t),

Ḃ(t) = i V (2)(a(t)) A(t),

Ṡ(t) =
η(t)2

2
− V (a(t)).
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If V (X) is quadratic, there is no error.

There are many generalizations of this result.

(Time dependent V ’s. Higher order in ~1/2. Approximations

with exp(−C/~) errors from optimal truncation.)

Faou, Gradinaru, and Lubich recently developed a

numerical algorithm for solving semiclassical time–dependent

Schrödinger equations that is based on these wave packets.

It scales very well as the space dimension and/or

the approximation order are increased.
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The Time–Dependent Born–Oppenheimer Approximation

Molecular Hamiltonians can be written as

H(ε) = − ε4

2
∆X + h(X),

where the electron Hamiltonian h(X) depends parametrically

on the nuclear configuration X.

We wish to find approximate solutions to

i ε2
∂Ψ

∂t
= H(ε) Ψ.
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Born–Oppenheimer Approximations treat the electrons and

nuclei separately, while respecting the coupling between them.

STEP 1. For each configuration X of the nuclei, solve the

electronic eigenvalue problem.

h(X) Φ(X,x) = E(X) Φ(X,x).

• The various different discrete eigenvalues E(X) that

depend continuously on X are called electron energy levels.

STEP 2. Use the semiclassical wave packets for the nuclei with

an electron energy level E(X) playing the role of the potential.
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Hypotheses

• Assume the resolvent of h(X) is smooth in X.

• Assume E(X) is a non–degenerate level for all X, and

let Φ(X) be an associated normalized eigenvector with

phase chosen so 〈Φ(X, ·), ∇XΦ(X, ·) 〉Hel
= 0.

• Solve the semiclassical equations of motion

ȧ(t) = η(t),

η̇(t) = − E(1)(a(t)),

Ȧ(t) = i B(t),

Ḃ(t) = i E(2)(a(t)) A(t),

Ṡ(t) =
η(t)2

2
− E(a(t)).
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Theorem 1 The time–dependent Schrödinger equation has a

solution of the form ΨN,ε(X, x, t) + errorN,ε,

where ΨN,ε(X, x, t) =
N∑
n=0

ψn,ε(X, x, t) ε
n

and ‖ errorN,ε ‖ ≤ CN ε
N+1, for t ∈ [0, T ].

The zeroth order term in the expansion is

ψ0,ε(X, x, t)

= eiS(t)/ε2 Φ(X,x)
∑
|k|≤K

ck φk(A(t), B(t), ε2, a(t), η(t), X),

where the ck and K are arbitrary.
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Theorem 2 Under analyticity assumptions on h(X), we can

choose N(ε) = O(ε−2), such that the Schrödinger equation has

a solution of the form ΨN(ε),ε + errorε,

where ‖ errorε ‖ ≤ C exp
(
− Γ

ε2

)
, for t ∈ [0, T ].

Furthermore, given any b > 0, this N(ε) can be chosen so that

there exist D and γ > 0, such that

∫
|X−a(t)|>b

∥∥∥ΨN(ε),ε(X,x, t)
∥∥∥2

Hel
dX ≤ D exp

(
− γ

ε2

)
.
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Remarks

• Semiclassical wave packet techniques handle the nuclear motion.

• An adiabatic expansion handles the electronic states.

• We use the Method of Multiple Scales to separate semiclassical

terms from adiabatic terms in the perturbation calculations.

• The analog of Theorem 1 is proven for Coulomb potentials.

• Theorem 2 follows from Theorem 1 and the estimate

‖ errorN−1,ε ‖ ≤ α βN NN/2 εN by a simple calculation.

• The form of the error estimate in Theorem 2 is optimal.

Our approximation ignores tunnelling by the nuclei and

non–adiabatic transitions by the electrons.
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Remarks (continued)

• There are several other approaches. See, for example,

• C. Fermanian–Kammerer, P. Gérard.

• G. Panati, H. Spohn, S. Teufel.

• C. Lasser, C. Fermanian–Kammerer.

• A. Martinez, V. Sordoni.
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Exponentially Small Non–Adiabatic Transitions

We only have leading order results for small ε

when nuclei have 1 degree of freedom

and the electron Hamiltonian is an analytic n× n matrix.

For further simplicity, let n = 2.

Assume h(X) approaches limits as X → ±∞ sufficiently rapidly,

and that there is one avoided crossing of the eigenvalues.

We can find the leading order exponentially small

non–adiabatic correction for the scattering theory when

the total energy is strictly above all the eigenvalues of h(·).

10



Example that illustrates the rigorous results

h(x) =
1

2

(
1 tanh(x)

tanh(x) −1

)
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Scattering with large negative t asymptotics

eiS(t)/ǫ2φk(A(t), B, ǫ2, a(t), η, x) Φup(x).
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What should we expect?

• The nuclei behave like classical particles (at least for small k).

• The electrons should feel a time–dependent Hamiltonian

h̃(t) =
1

2

(
1 tanh(a(t))

tanh(a(t)) −1

)
,

and we should simply use the Landau–Zener formula

to get the exponentially small transition probability.

• For η = 1, energy conservation predicts the momentum

after the transition to be 1.9566.
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This intuitive picture is wrong!

• The transition amplitude is larger than predicted.

• The momentum after the transition is larger than predicted.

Additional Surprises

• For incoming state φk, the nuclear wave function after the

transition is not what one might näıvely expect.

• The nuclear wavepacket after transition is a φ0.

• The transition amplitude is asymptotically of order

ǫ−k exp
(
−α/ǫ2

)
.
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Position space plot at time t = −10 of the probability density

for being on the upper energy level.
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Momentum space plot at time t = −10 of the probability density

for being on the upper energy level.

4



−20 −15 −10 −5 0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Position space probability density at time t = 9.

Lower level plot is multiplied by 3× 108.
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Momentum space probability density at time t = 9.

Lower level plot is multiplied by 3× 108.
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Position space probability density at time t = −10.
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Momentum space probability density at time t = −10.
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Position space probability density at time t = 9.

Plot for the lower level has been multiplied by 107.
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Momentum space probability density at time t = 9.

Plot for the lower level has been multiplied by 107.
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What’s going on, and how do we analyze it?

• We expand Ψ(x, t) in generalized eigenfunctions of H(ǫ).

• We then do a WKB approximation of the generalized

eigenfunctions that is valid for complex x.

• We find that the Landau–Zener formula gives the correct

transition amplitude for each generalized eigenfunction.

This amplitude behaves roughly like exp

(
− C

|p| ǫ2
)

,

where p is the incoming momentum.

• So, higher momentum components of the wave function are

drastically more likely to experience a transition.

We get the correct result by using Landau–Zener for each p

and then averaging.
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Why do we always get a Gaussian?

• In the formulas, the extra shift in momentum occurs

in the exponent.

• In momentum space φk all have the same exponential factor.

The extra shift does not appear in the polynomial that

multiplies the exponential.

• For small ǫ, to leading order, the polynomial factor looks like

its largest order term near where the Gaussian is

concentrated in momentum.

•
(

p

ǫ

)k
exp

(
− (p− η)2

ǫ2

)
is approximately ǫ−k times a Gaussian

for η 6= 0.
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