

Non-Adiabatic Transitions in a Simple Born-Oppenheimer Scattering System

George A. Hagedorn

Department of Mathematics, and
Center for Statistical Mechanics, Mathematical Physics
and Theoretical Chemistry
Virginia Tech
Blacksburg, Virginia 24061–0123
USA

hagedorn@math.vt.edu

ETH 9 June 2009

Outline

- 1. Semiclassical Wave Packets
- 2. The Time-Dependent Born-Oppenheimer Approximation
- 3. Exponentially Small Non-Adiabatic Scattering Transitions

Semiclassical Wave Packets

To state time-dependent results in their most explicit form, we need to discuss semiclassical wave packets $\phi_k(A, B, \hbar, a, \eta, x)$.

- These are generalizations of Harmonic oscillator states.
- They coincide with generalized squeezed states.
- In the molecular context, \hbar will be ϵ^2 .

 $\{\phi_k(A,B,\hbar,a,\eta,x)\}$ is an orthonormal basis of $L^2(\mathbb{R}^d)$ as k ranges over d-dimensional multi-indices.

- \bullet $a \in \mathbb{R}^d$ represents a classical position.
- \bullet $\eta \in \mathbb{R}^d$ represents a classical momentum.
- A and B are complex invertible $d \times d$ matrices that satisfy $A^tB B^tA = 0$ and $A^*B + B^*A = 2I$.

The position uncertainty is determined by $\epsilon |A|$, and the momentum uncertainty is determined by $\epsilon |B|$.

$$\phi_0(A, B, \hbar, a, \eta, x) = \pi^{-d/4} \hbar^{-d/4} (\det(A))^{-1/2}$$

$$\times \exp\left\{-(x-a) \cdot BA^{-1}(x-a)/(2\hbar) + i\eta \cdot (x-a)/\hbar\right\}.$$

There are raising and lowering operators with the same algebraic properties as with the Harmonic oscillator.

Define the Fourier Transform

$$(\mathcal{F}_{\hbar} f)(\xi) = (2\pi\hbar)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{-i\xi \cdot x/\hbar} dx.$$

Then

$$(\mathcal{F}_{\hbar} \phi_k(A, B, \hbar, a, \eta, \cdot))(\xi) = e^{-ia \cdot \eta/\hbar} \phi_k(B, A, \hbar, \eta, -a, \xi).$$

If V(X) is smooth and bounded below, then

$$e^{iS(t)/\hbar} \sum_{|k| \le K} c_k \phi_k(A(t), B(t), \hbar, a(t), \eta(t), X)$$

solves the time-dependent Schrödinger equation

$$i \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2} \Delta_X \psi + V(X) \psi,$$

up to an $O(\hbar^{1/2})$ error.

Here

$$\dot{a}(t) = \eta(t),$$
 $\dot{\eta}(t) = -V^{(1)}(a(t)),$
 $\dot{A}(t) = i B(t),$
 $\dot{B}(t) = i V^{(2)}(a(t)) A(t),$
 $\dot{S}(t) = \frac{\eta(t)^2}{2} - V(a(t)).$

If V(X) is quadratic, there is no error.

There are many generalizations of this result.

(Time dependent V's. Higher order in $\hbar^{1/2}$. Approximations with $\exp(-C/\hbar)$ errors from optimal truncation.)

Faou, Gradinaru, and Lubich recently developed a numerical algorithm for solving semiclassical time—dependent Schrödinger equations that is based on these wave packets.

It scales very well as the space dimension and/or the approximation order are increased.

The Time-Dependent Born-Oppenheimer Approximation

Molecular Hamiltonians can be written as

$$H(\epsilon) = -\frac{\epsilon^4}{2} \Delta_X + h(X),$$

where the electron Hamiltonian h(X) depends parametrically on the nuclear configuration X.

We wish to find approximate solutions to

$$i \epsilon^2 \frac{\partial \Psi}{\partial t} = H(\epsilon) \Psi.$$

Born-Oppenheimer Approximations treat the electrons and nuclei separately, while respecting the coupling between them.

STEP 1. For each configuration X of the nuclei, solve the electronic eigenvalue problem.

$$h(X) \Phi(X,x) = E(X) \Phi(X,x).$$

• The various different discrete eigenvalues E(X) that depend continuously on X are called electron energy levels.

STEP 2. Use the semiclassical wave packets for the nuclei with an electron energy level E(X) playing the role of the potential.

Hypotheses

- Assume the resolvent of h(X) is smooth in X.
- Assume E(X) is a non-degenerate level for all X, and let $\Phi(X)$ be an associated normalized eigenvector with phase chosen so $\langle \Phi(X,\cdot), \nabla_X \Phi(X,\cdot) \rangle_{\mathcal{H}_{\mathbf{Pl}}} = 0$.
- Solve the semiclassical equations of motion

$$\dot{a}(t) = \eta(t),$$
 $\dot{\eta}(t) = -E^{(1)}(a(t)),$
 $\dot{A}(t) = i B(t),$
 $\dot{B}(t) = i E^{(2)}(a(t)) A(t),$
 $\dot{S}(t) = \frac{\eta(t)^2}{2} - E(a(t)).$

Theorem 1 The time-dependent Schrödinger equation has a solution of the form $\Psi_{N,\epsilon}(X,\,x,\,t) \,+\, error_{N,\epsilon}$,

where
$$\Psi_{N,\epsilon}(X, x, t) = \sum_{n=0}^{N} \psi_{n,\epsilon}(X, x, t) \epsilon^n$$

and
$$\|error_{N,\epsilon}\| \leq C_N \epsilon^{N+1}$$
, for $t \in [0, T]$.

The zeroth order term in the expansion is

$$\psi_{0,\epsilon}(X, x, t)$$

$$= e^{iS(t)/\epsilon^2} \quad \Phi(X,x) \quad \sum_{|k| \le K} c_k \ \phi_k(A(t), B(t), \epsilon^2, a(t), \eta(t), X),$$

where the c_k and K are arbitrary.

Theorem 2 Under analyticity assumptions on h(X), we can choose $N(\epsilon) = O(\epsilon^{-2})$, such that the Schrödinger equation has a solution of the form $\Psi_{N(\epsilon),\epsilon} + error_{\epsilon}$,

where
$$\|error_{\epsilon}\| \leq C \exp\left(-\frac{\Gamma}{\epsilon^2}\right)$$
, for $t \in [0, T]$.

Furthermore, given any b>0, this $N(\epsilon)$ can be chosen so that there exist D and $\gamma>0$, such that

$$\int_{|X-a(t)|>b} \|\Psi_{N(\epsilon),\epsilon}(X,x,t)\|_{\mathcal{H}_{\mathsf{el}}}^2 dX \leq D \exp\left(-\frac{\gamma}{\epsilon^2}\right).$$

Remarks

- Semiclassical wave packet techniques handle the nuclear motion.
- An adiabatic expansion handles the electronic states.
- We use the Method of Multiple Scales to separate semiclassical terms from adiabatic terms in the perturbation calculations.
- The analog of Theorem 1 is proven for Coulomb potentials.
- Theorem 2 follows from Theorem 1 and the estimate $\|error_{N-1,\epsilon}\| \ \le \ \alpha \ \beta^N \ N^{N/2} \ \epsilon^N \quad \text{by a simple calculation}.$
- The form of the error estimate in Theorem 2 is optimal.
 Our approximation ignores tunnelling by the nuclei and non-adiabatic transitions by the electrons.

Remarks (continued)

- There are several other approaches. See, for example,
 - C. Fermanian-Kammerer, P. Gérard.
 - G. Panati, H. Spohn, S. Teufel.
 - C. Lasser, C. Fermanian-Kammerer.
 - A. Martinez, V. Sordoni.

Exponentially Small Non-Adiabatic Transitions

We only have leading order results for small ϵ when nuclei have 1 degree of freedom and the electron Hamiltonian is an analytic $n \times n$ matrix.

For further simplicity, let n = 2.

Assume h(X) approaches limits as $X \to \pm \infty$ sufficiently rapidly, and that there is one avoided crossing of the eigenvalues.

We can find the leading order exponentially small non-adiabatic correction for the scattering theory when the total energy is strictly above all the eigenvalues of $h(\cdot)$.

Example that illustrates the rigorous results

$$h(x) = \frac{1}{2} \begin{pmatrix} 1 & \tanh(x) \\ \tanh(x) & -1 \end{pmatrix}$$

Scattering with large negative t asymptotics

$$e^{iS(t)/\epsilon^2}\phi_k(A(t),B,\epsilon^2,a(t),\eta,x) \Phi_{\sf up}(x).$$

What should we expect?

- \bullet The nuclei behave like classical particles (at least for small k).
- The electrons should feel a time-dependent Hamiltonian

$$\widetilde{h}(t) = \frac{1}{2} \begin{pmatrix} 1 & \tanh(a(t)) \\ \tanh(a(t)) & -1 \end{pmatrix},$$

and we should simply use the Landau–Zener formula to get the exponentially small transition probability.

• For $\eta = 1$, energy conservation predicts the momentum after the transition to be 1.9566.

This intuitive picture is wrong!

- The transition amplitude is larger than predicted.
- The momentum after the transition is larger than predicted.

Additional Surprises

- \bullet For incoming state ϕ_k , the nuclear wave function after the transition is not what one might naïvely expect.
 - The nuclear wavepacket after transition is a ϕ_0 .
 - The transition amplitude is asymptotically of order

$$e^{-k} \exp\left(-\alpha/\epsilon^2\right)$$
.

Position space plot at time t=-10 of the probability density for being on the upper energy level.

Momentum space plot at time t=-10 of the probability density for being on the upper energy level.

Position space probability density at time t = 9. Lower level plot is multiplied by 3×10^8 .

Momentum space probability density at time t = 9. Lower level plot is multiplied by 3×10^8 .

Position space probability density at time t = -10.

Momentum space probability density at time t = -10.

Position space probability density at time t = 9. Plot for the lower level has been multiplied by 10^7 .

Momentum space probability density at time t = 9. Plot for the lower level has been multiplied by 10^7 .

What's going on, and how do we analyze it?

- We expand $\Psi(x, t)$ in generalized eigenfunctions of $H(\epsilon)$.
- We then do a WKB approximation of the generalized eigenfunctions that is valid for complex x.
- We find that the Landau–Zener formula gives the correct transition amplitude for each generalized eigenfunction. This amplitude behaves roughly like $\exp\left(-\frac{C}{|p|\,\epsilon^2}\right)$, where p is the incoming momentum.
- So, higher momentum components of the wave function are drastically more likely to experience a transition.
 We get the correct result by using Landau–Zener for each p and then averaging.

Why do we always get a Gaussian?

- In the formulas, the extra shift in momentum occurs in the exponent.
- In momentum space ϕ_k all have the same exponential factor. The extra shift does not appear in the polynomial that multiplies the exponential.
- ullet For small ϵ , to leading order, the polynomial factor looks like its largest order term near where the Gaussian is concentrated in momentum.
- $\left(\frac{p}{\epsilon}\right)^k \exp\left(-\frac{(p-\eta)^2}{\epsilon^2}\right)$ is approximately ϵ^{-k} times a Gaussian for $\eta \neq 0$.