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Time-dependent specific heat

Birge Nagel PRL

The exchanged heat is defined by

δQ
def
= < E(t)− E(0) >

Fluctuation–dissipation theorem gives

< E(t)− E(0) >= (CV − c(t))δβ + . . .

where CV is the canonical specific heat while

c(t)
def
= < E(t)E(0) >β − < E(t) >β< E(0) >β

is the autocorrelation function of the energy.

This can be proven in the hypothesis that

1. Gibbs measure is invariant

2. The dynamics is time reversible

3. Energy interaction can be neglected in

computing the averages



If the autocorrelation stabilizes, on a certain

time–scale (undercooled liquid for example),

and does not vanish, the specific heat is not

the canonical one. Next figures show what

happens in the case of a perfect crystal, i.e.

a FPU system (the number of particle ranges

from 512 to 4024).
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There is a PARADOX.

One starts up with an invariant measure, but

this is not the right ones to do Thermody-

namics. (Poincaré 1906, Nernst 1916)

How can this happen?

Does there exist an ensemble adapted to such

a situation?



General Setting

Given a map Φ : M → M and an orbit
xn+1 = Φ(xn), n = 0, . . . , N , one is interested
in computing the time–average of a dynam-
ical variable A : M → R. If M = ∪Zj is a
partition of M in K cells one has

Ā
def
=

1

N

N∑
n=0

A(xn) '
1

N

K∑
j=1

nj(x0)Aj

where nj is the sojourn time. If one assigns
a p.d.f. for the initial data x0 (for example
Lebesgue) and averages one gets

< Ā >=
1

N

K∑
j=1

< nj > Aj

Given a p.d.f for the initial data, nj turns
out to be a RANDOM VARIABLE with a
p.d.f Fj(n) (i.e. Fj(n) is the probability that
nj < n).
Hypothesis One assumes that the random
variables nj are independent, except for∑

j

nj = N
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In thermodynamics one has the condition that

the time average of energy has a given value

U , i.e.

1

N

∑
njεj ≡ U

(
and U 6=< E >

def
=

1

N

∑
< nj > εj

)
So, one has the problem to compute the con-

ditional probability, i.e. to compute

ν̄j ≡ mean sojourn time when mean energy

is U

Knowing ν̄j one gets

< Ā >U=
1

N

K∑
j=1

ν̄jAj

Notice that ν̄j has to satisfy the relations

N =
K∑

j=1

ν̄j , U =
1

N

K∑
j=1

ν̄jεj



The quantities ν̄j are computed as follows.

Define the function

exp
(
χj(z)

)def
=

+∞∫
0

e−nz dFj

then one has

ν̄j = −χ′j
( θ

N
εj + α

)
where θ and α are determined by imposing

that U is the mean energy, and the number

of total visits is N . So the time-average of

A turns out to be given by

< Ā >U= −
1

N

K∑
j=1

Ajχ
′
j

( θ

N
εj + α

)



Define the exchanged heat as the difference

δQ = dU − δW
where δW is the mean work performed by
changing the external parameter. Then one
finds

δQ =
1

N

∑
j

εjdν̄j

One then finds that this expression admits
θ/N as an integrating factor. In fact, intro-
ducing

νj
def
= −χ′j(z)

as an independent variable one indeed has

δQ =
N

θ
d

(
1

N

∑
hj(ν̄j)

)
where hj(ν) is the Legendre transform of the
function χj(z). As a consequence the quan-
tity

S =
∑
j

hj(ν̄j)/N

can be identified with entropy, and

β = θ/N

with inverse temperature.



Now, if the p.d.f. Fj(n) is a Poisson distri-

bution, it turns out that

χj(z) = p exp(−z)− p

and the measure turns out to be equal to

the Gibbs distribution (and the specific heat

turns out to be the canonical one). Instead

if

χj(z) = p(1 +
z

σ
)−σ − p

the measure becames equal to the so called

q–Tsallis distribution. Here q is given by σ =
1

1−q.
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Return Times

DEFINITION. If x0 ∈ Zj, the return time

tj(x0) is defined as

tj(x0) = min{n > 0 s.t. xn ∈ Zj}

In the following hypothesis

HYPOTHESIS: The subsequent visits of the

orbit to the same cell are recurrent events.

between the p.d.f G(tj) of the return times

and the p.d.f. Fj(n) of the sojourn times one

has the relation stated in the following

Theorem(Feller, 1949): Defining Ĝj(s) =∑
Gj(n)sn, then the function exp(χj(z)) is

the N-th coefficient of the series expansion

of the function

Fj(s)
def
=

1

1− e−zĜj(s)

1− Ĝj(s)

1− s

in powers of s.


